
iPlC FILTL cOPIY)

Technical Report 1233

NDataflow
Computation for

on

N

Ellen Spertus

MIT Artificial Intelligence Laboratory

DTIG
ELECTE

PISTRIPUTION STATEMENT A
?fr-,ve o public release;

.' ri!.,-':-n Unlijmited

UNCLASSIF IED
1111TV CLASSIrICATIO4 Or TWIS WAGE f*74on Dole Eneered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

191O00? NUMeIt 2. GOVT ACCESSION NO. S. RECIPENT'S CATALOG NUMBER

AI-TR 1233

'ITLK (and Subeffie) S. TYPE Of REPORT A PERIOO COVERED

Dataflow Computation for the J-Machine technical report

6. PERFORMING ORG. REPORT NUMBER

6UTmORfE) S. CONTRACT OR GRANT NUMIERs)
N00014-87-K-0825

Ellen Spertus N00014-88-K-0738
N00014-85-K-0124 MIP-8657531

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK"T~aoraorvAREA, SwoRK UNIT NUNUERS

Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

Advanced Research Projects Agency June 1990

1400 Wilson Blvd. Is. NUMBER OF PAGES

Arlington, VA 22209 129
MONITORING AGENCY NAME G ADORESS(I/ differnm Ifrm Comw.llnd Offie) IS. SECURITY CLASS. (of tie repoe)

Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, VA 22217 I5,. DCLASS'ICATIO/OOWGRAOINGSCHEDUL.E

OISTRIBUTION STATEMENT (of thio Reperl)

Distribution is unlimited

DISTRIBUTION STATEMENT (of te a bseec eIted In Block 30, II dillerent Aom Repe")

SUPPLEMENTARY NOTES

None

KEY WORDS (Cs.lIn.e on poer@* side II neeeom7 wsn Idealfir e*A
,

enlo6oe)

parallel processing
compilation
data flow

ABSTRACT (Confeino on eers elId It neefeoin mid fdenlftl, 6y blac knab.)

The dataflow model of computation exposes and exploits parallelism in programs without

requiring programmer annotation; however, instruction-level dataflow is too fine-grained to be

efficient on general-purpose processors. A popular solution is to develop a "hybrid" model of

computation where regions of datafiow graphs are combined into sequential blocks of code. I

(continued on back)

So-- 1473 EDITION OF I NOV 61 IS ONSOLETE UNCLASS I F I ED
I JAN 73143UCASFE

SI C0LASSI*F01 I OFTHISPAGE_(WhenDoes________
SECURITY CL ASSI rlCATION OF THIS PMAGE (~iro Vae Enleam

IU

Block 20 continued:

have implemented such a system to allow the J-Machine to run Id programs, leaving exposed

a high amount of parallelism - such as among loop iterations. I describe this system and

provide an analysis of its strengths and weaknesses and those of the J-Machine, along with

ideas for improvement.

Dataflow Computation for the J-Machine

Ellen Spertus

Abstracti

The dataflow model of computation exposes and exploits parallelism in programs without

requiring programmer annotation; however, instruction-level dataflow is too fine-graine to be

efficient on general-purpose processors. A popular solution is to develop a hybrid model of

computation where regions of dataflow graphs are combined into sequential blocks of code. I

have implemented such a system to allow the J-Machine to run Id programs, leaving exposed

a high amount of parallelism - such as among loop iterations. I describe this system and

provide an analysis of its strengths and weaknesses and those of the J-Machine, along with

ideas for improvement. -

.- - I t ,-

""/ ' • ...

This report describes research done at the Artificial Intelligence Laboratory of the Mas-

sachussets Institute of Technology. Support was provided in part by the Advanced Research

Projects Agency of the Department of Defense under contracts N00014-88K-0738 and N00014-

87K-0825, in part by a National Science Foundation Presidential Young Investigator Award,

grant MIP-8657531, with matching funds from General Electric Corporation and IBM Corpo-

ration, and in part by the Advanced Research Projects Agency of the Department of Defense

under Office of Naval Research contract N00014-85K-0124.

Submitted to the Department of Electrical Engineering and Computer Science in May,

1990, in partial fulfillment of the requirements for the Degree of Bachelor of Science.

i

Acknowledgments

I have received help and encouragement from many people. First, I would like to thank the

members of the MIT Concurrent VLSI Architecture group for their help. Julia Bernard,

Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen, Richard Lethin, Mike Noakes,

Peter Nuth, Lucien Van Elsen, Debby Wallach, and Scotty Wills have all helped me directly

or indirectly in my work. They are all a great bunch of people. I am especially grateful

to Scotty for getting Id World up on our machines, Mike for his all-around helpfulness, and

Debby and Lucien for helping me with text and graphics formatting.

The members of the Computation Structures Group provided crucial help, generously

sharing their equipment and expertise. I want to specifically thank Jonathan Young for his

general helpfulness and Bradley Kuszmaul for describing his P-RISC research to me. I am

especially grateful to Robert lannucci, for developing his hybrid system and being willing to

answer my questions, and Jamey Hicks, who got the hybrid system up on the current release

of Id World.

Thanks are also due to Arvind, one of the major forces behind the dataflow group and also

my academic advisor. He has been providing me with encouragement and advice for years, as

well as teaching me about dataflow in 6.847.

I am very grateful to my thesis supervisor and head of the CVA group, Bill Dally. If it

weren't for his faith in me, his encouragement and advice, his willingness to spend time and

resources on me, and the wonderful working environment he provides, none of this would have

been possible.

I am also grateful to my friend Nate Osgood for letting me bounce ideas off him and

brainstorming with me, as well as for moral support.

Finally, I would like to thank my family. My parents, siblings, and grandparents have

been wonderful role models, and they have unceasingly providing me with love and support.

I am especially grateful to my father, who has given me encouragement he has given me since

as far back as I can remember.

ii

Accession For

NTIS GRA&I
DTIC TAB
Unannounced5
Justification

By

ContentsDistribution/
ContentsAvailability Codes

jAvail and/or
MistSpec ial.

1 Introduction -

1.1 Background. 2

1.1.1 Id. 3

1.1.2 lannucci's Hybrid Architecture. 7

1.1.3 The J-Machine. 7

1.2 Overview. 8

2 Executing Hybrid Code on the J-Machine 9

2.1 Overview 10

2.2 Data Structures. 11

2.2.1 Codeblocks. 11

2.2.2 The Data Stack 12

2.2.3 Frames 12

2.2.4 Continuations. 13

2.2.5 I-Structures. 15

2.3 Control Structure 16

2.3.1 Execution Within a Codeblocic.. 16

2.3.2 Procedure Calls 19

2.3.3 Loops. 20

2.4 Conclusion. 26

3 Compilation 27

3.1 Changes to Machine Code Generation 30

iii

3.1.1 Loops 30

3.1.2 Procedure Calls 30

3.2 Assembling Hybrid Code 31

3.3 Convert Hybrid to Complex J3.. 33

3.3.1 Label Instruction 34

3.3.2 Simple Arithmetic Instructions. 34

3.3.3 Complicated Arithmetic Instructions. 35

3.3.4 Move Instructions 35

3.3.5 Test Instructions. 37

3.3.6 Continuation Instructions 37

3.3.7 Procedure Linkage Instructions 38

3.3.8 Conclusion. 39

3.4 Convert Complex J to Simple J. 42

3.4.1 Converting Literals to Tagged Literals 42

3.4.2 Generating Suspensive Code 42

3.4.3 Allocating MDP Registers. 44

3.4.4 Converting to Legal MDP Operands. 44

3.5 Convert Simple to ASM. 46

3.6 Conclusion. 47

4 Analysis 48

4.1 Detailed Benchmark: Factorial. 48

4.1.1 The Dataflow Graph 48

4.1.2 The Hybrid Code 50

4.1.3 The MDP Code. 55

4.1.4 Load Balancing 55

4.1.5 Dynamic Counts. 55

4.1.6 Throughput. 57

4.1.7 Conclusion. 57

4.2 Fibonacci 58

4.3 Loop Parallelization 59

iv

4.4 Conclusion 62

5 Conclusion 63

5.1 Improving MDP Code....................................... 64

5.2 Improving Hybrid Code...................................... 64

5.3 Strengths and Weaknesses of the J-Machite 65

5.4 Synchronization on Tokens. 66

5.5 Conclusion. 68

A MDP Program Examples 70

A.1 MDP Code for Factorial...................................... 70

A.2 MDP Code for Fibonacci..................................... 76

A.3 MDP Code for Loop Example.................................. 84

B MDP Library Code 94

B.1 General Library... 94

B.2 I-Structure Routines.. 101

B.3 Loop Support.. 104

C Source Code 106

CA1 Convert Hybrid to Complex J.................................. 106

C.2 Convert Complex J to Simple J................................ 113

C.3 Convert Simple J to Assembly................................. 124

v

List of Figures

1-1 A FSM Description of an I-Structure Location 5

2-1 Run-Time Data Structures. 11

2-2 A Pointer to a Codeblock 12

2-3 A Non-Loop Procedure Frame 13

2-4 An I-Structure Descriptor and Storage 15

2-5 An I-Structure 16

2-6 A Statically Unschedulable, Codeblock 17

2-7 Scheduling Quanta for Codeblock Example 18

2-8 Snapshots for Codeblock Example. 18

2-9 Procedure Linkage Example 19

2-10 Possible Implementation of an Iteration Descriptor 21

2-11 A Loop Procedure Frame 22

2-12 Iteration Areas and Pointers. 23

2-13 Loop Program Example. 23

2-14 Pseudo-Code Produced for Loop Example. 24

2-15 Snapshots for Loop Example. 25

3-1 Structure of the Id-to-MDP Compiler 28

3-2 New and Modified Compiler Stages 29

3-3 A Non-Optimal J-Machine Calling Convention. 32

3-4 The Ordering Specified by Successive Function Calls. 33

3-5 The Hybrid-to-Complex-J Conversion of an Addition 35

3-6 The Template for Converting Absolute Value 36

vi

3-7 The Hybrid- to- Complex-I Conversion of a Test-i. 37

3-8 Transformation of Get-Context. 40

3-9 Transformation of Index- Current- Context. 41

3-10 Intermediate Code Produced for Suspensive Pseudo-Operands. 43

3-11 Compiler Register Allocation. 45

4-1 Id Code for Factorial. 49

4-2 A Dataflow Graph for Factorial. 49

4-3 Hybrid Code for Factorial. 52

4-4 Scheduling Quanta of Factorial Code. 53

4-5 Frame Slots Used by Factorial Code. 54

4-6 Id Code for Fibonacci. 58

4-7 Plot of Ticks for Fibonacci. 60

4-8 Id Code for Loop Example. 61

5-1 A Monadic Node Using ETS. 67

5-2 A Dyadic Node Using ETS. 67

5-3 The Cfuture Handler for ETS 68

vii

List of Tables

4.1 System Calls for (tact 4) 56

4.2 Dynamic Instruction Usage for (tfact 4) 56

4.3 Throughput for Factorial 57

4.4 Timings for Fibonacci. 59

viii

Chapter 1

Introduction

If you can look into the seeds of time,

And say which grain will grow and which will not,

Speak.

- William Shakespeare, Macbeth, Act I, Scene iii, line 58.

This thesis describes a system I designed and implemented to allow programs written

in the dataflow language Id to run on the J-Machine, a massively-parallel general-purpose

computer. The system is functional and includes:

" A compiler that recognizes a significant portion .)f Id and produces J-Machine assembly

code.

" Library routines to provide operating system functions, fault handlers, and language-

specific featbu-es like I-structure storage.

" A strategy for aggressive loop parallelization.

I do not directly address the question of how to sequentialize portions of dataflow graphs. For

this, I took advantage of the work done by Ken Traub on program partitioning [Traub 1988]

and Robert Iannucci for his "dataflow / von Neumann hybrid" architecture and compiler

[Iannucci 1988]. With some optimizations, my system simulates Iannucci's hybrid architec-

ture on tl'e J-Machine. In this document, I describe and justify my approach, detail my

1

transformations, analyze the results, and present my conclusions about the project and future

research on dataflow computation for the J-Machine.

1.1 Background

A large amount of research has gone into developing and implementing the dataflow model

of parallel computation. In order to exploit the parallelism revealed by dataflow techniques,

special-purpose dataflow machines have been built that are unlike traditional von Neumann

processors, using parallel machine languages and having token and I-structure memory. Be-

ck use individual instructions are scheduled dynamically on dataflow processors, this leads

to unnecessarily high run-time overhead. On the other hand, dataflow architectures, with

their per instruction synchronization, are more tolerant than von Neumann machines at tol-

erating latency: If the data dependences allow some computation to be performed while the

previously-executing task is waiting for data, the processor will be kept busy. The motivation

for a hybrid architecture is to combine the latency toleration of a dataflow processor with the

efficiency of a von Neumann processor. Often, enough is known at compile-time to specify a

full ordering of a set of instructions, reducing the amount of run-time scheduling necessary.

Hybrid architectures attempt to take advantage of this knowledge by delineating sequences of

instructions whose order can be pre-determined, combining the exposed parallelism of dataflow

with the efficiency of von Neumann computation.'

While combining instructions into sequential threads theoretically lessens the amount of

run-time parallelism available, it can be more practical in that it minimizes scheduling over-

head and allows the code to run on computers not dedicated to dataflow processing. Ad-

ditionally, even dataflow computers do not attempt to exploit the maximum possible par-

allelism. For example, on Monsoon, a specific invocation of a procedure is generally not

divided among processors but takes place on a single one. Instead, the parallelism comes

from pipelining and from running iterations of one loop concurrently on separate processors

[Papadopoulos and Culler 1990], a feature that ." retained by hybrid architectures. In order

to ensure that grouping instructions into threads does not lessen the ability to tolerate latency,

'This justification of hybrid architectures based on latency toleration is due to ideas in [lannucci 1988,
Chapters 1 and 2].

2

we obey "Iannucci's Injunction" that instructions within a thread may not have unbounded

latency. Instructions with unbounded latency - such as procedure ca 1ls and global memory

accesses - cause a thread to suspend, allowing another to execute.

My work includes a compiler back-end to allow dataflow programs to run on the J-Machine,

a general-purpose massively-parallel computer. Although closer to the von Neumann model

than dataflow architectures, the J-Machine has many of the necessary communication and

naming primitives needed for dataflow computation. I built my back-end on top of the Id

compiler developed by the Computation Structures Group at the MIT Laboratory for Com-

puter Science [Traub 1986a], as augmented by Robert Iannucci to produce code for his hybrid

architecture [Iannucci 1988]. My system transforms his hybrid code to run on the J-Machine.

1.1.1 Id

Id is a primarily functional language developed in the Computation Structures Group of the

MIT Laboratory for Computer Science for programming dataflow and other parallel comput-

ers. [Nikhil 1988] is a reference for the latest version. All of its features are supported by my

transformations, except for algebraic types, as they postdate lannucci's compiler on which

mine is based. A quick overview of pertinent features of the language is presented here.

Types

The only primitive types in Id are booleans, characters, numbers, character strings, and

symbols. 2 Additionally, there are four pre-defined type constructors that take one or more

types and create new types:

" array types: (1D.array t), (2Darray t),

* list types: (list t)

* tuple types: (to,...,tn)

" funztion types: (to -* t 1)

2In the latest version of Id, booleans are not primitive but are defined with algebraic types, which we were

unable to support, as described above.

3

Id is strongly-typed in that extensive compile-time and run-time type-checking is per-

formed, but users rarely explicitly provide type information. Additionally, Id allows polymor-

phism.

Function Application

The application of function f with arguments a1, ... , a, is written:

f a, ...a,

Id also supports currying: If function f "expects" two arguments, f a, instead of being illegal

as in most languages, returns a function that takes one argument. For example, if plus is

defined as a function that takes two numbers and adds them, plus 3 returns a function that

takes one number as an argument and adds 3 to it. As will be seen later, currying causes

additional overhead in run-time procedure linkage.

I-Structures

One major argument against purely functional languages is their suboptimal efficiency with

arrays. Specifically, it is unnecessarily wasteful to copy an entire array when modifying one

element. Filling in the n elements of a previously-empty array can take 0(n 2) time and space,

as the entire array is recopied when each element is written. This problem was partially

solved with I-structures, arrays with elements that can only be written to once. After being

written to, reads take place as expected; subsequent writes are a run-time error. Because no

copying is done, filling an array of I-structures takes 0(n) time. If a read takes place before

a write, the read is silently deferred until the data is available. This process is illustrated in

Figure 1-1. Out-of-bound accesses to I-structures cause run-time errors. The properties of

I-structures guarantee deterministic behavior in legal programs3. While keeping Id from being

purely functional, they greatly improve its efficiency without harming abstraction. Tuples and

arrays, described above, are implemented as I-structures.

In addition to supporting user types, I-structures are used to create closures for currying

'Here and elsewhere, a legal program is one in which no compile-time or run-time errors occur.

4

read write write

Figure 1-1: A FSM Description of an I-structure Location. Originally, an I-structure location
is empty. Reads are silently deferred until data has arrived. Once data has been written,

pending and subsequent read requests can be fulfilled. Writing a location more than once is

a run-time error.

procedure calls. Whenever an argument is applied to a procedure, a check is made whether

the argument supplied is the last one. If so, the procedure is invoked; otherwise, the argument

is added to the I-structure list of arguments and saved into a closure.

Blocks

Blocks in Id provide a mechanism to bind names to values within the block's body. It is

analogous to Lisp's let construct, except that, as in all Id constructs, the textual order of the

statements is ignored. A block to compute the surface area of a cylinder, given its radius r

and height h, could be written:

{ face = Pi * r * r;

body = 2 * Pi * r * h

in

2 * face + body }

Note that it is not always possible to statically determine the order in which statements

in the "declaration" section of a block will execute. Consider the following example from

[Traub 1989, page 2]:

p=x > 0;
a = if p then bb else 3;

b = if p then 4 else aa;

aa-= a + 5;
bb= b + 6;
c~a+b

in
c);

If z > 0, the only possible order of evaluation is: p, b, bb, a, aa, c. If x < 0, the

expressions must be evaluated in a different order: p, a, aa, b, c. This provides an example of

an Id fragment in which the order of execution of statements cannot be determined at compile-

time. This provides a theoretical limit on compile-time scheduling, beyond any practical limits

based on insufficiently sophisticated compilers, because no compile-time scheduling exists.

Loops

The format of a loop statement is:

{for x <- eIndex do
<statement>

<statement>
finally e}

The keyword nezt is provided to refer to the next value of a loop iteration. For example, a

loop to add the first n integers would be written:

{ sum = 0
in

{ for count <- 1 to n do
next sum = sum + count

finally sum }}

The semantics of Id are such that it is possible for multiple iterations of a loop to execute

in parallel. lannucci's compiler for the hybrid architecture has loops execute in "parallel"

on a single processor, i.e. statements in the ith iteration may execute before statements in

the jth iteration, as long as data dependences are respected. Inner loops are put in separate

codeblocks and can be spawned to separate processors.

Many years have been spent developing and optimizing an Id compiler for the Tagged-

Token Dataflow Architecture [Traub 1986a], a paper dataflow architecture. This compiler was

the base of lannucci's and of my research.

6

1.1.2 lannucci's Hybrid Architecture

Development of hybrid architectures is an active area of research. See [Gaudiot and Bic 1989]

for a summary of recent research in the area. One of the best known hybrid architectures is

the EM-4 being developed at the Electrotechnical Laboratory in Japan [Sakai et al 1989]. I

chose to base my work on Iannucci's system because of the ease with which I could access his

compiler, developed at MIT, as well as its quality.

Iannucci's extensions to the Id compiler make use of information available at compile-time

to create scheduling quanta (SQs), sequences of code within which the order is specified at

compile-time. Invocation of a codeblock or procedure takes place on a single processor and

generally consists of many SQs.4 When a procedure is invoked, the instructions in the first SQ

are executed sequentially, suspending at the end of the SQ or if a fault occurs, signifying that

needed data is not ready. The execution of other SQs results from explicit forks.5 The length

of scheduling quanta is limited by the level of the compiler's analysis and by the requirements

of Id. Arguments, local variables, and all but the most ephemeral of temporaries are stored

within a frame allocated when the codeblock is invoked. My implementation for the J-Machine

includes all of these characteristics. Further details about Iannucci's implementation and

architecture will be provided as needed throughout the document. Henceforth, when I write

"the hybrid architecture," I mean to refer to Iannucci's architecture.

1.1.3 The J-Machine

The target of my system is th,. J-Machine, a massively-parallel MIMD computer based on

the Message-Driven Processor (MDP). Each processor has 260K (4K on chip) of 32-bit-word

memory augmented with 4-bit tags. Tag types include booleans, integers, symbols, and cfu-

tures. Cfutures generate faults on most operations. The MDPs communicate with each other

through a low-latency network by sending messages. When a message arrives at a processor,

4To be exact, it is not always true that a procedure invocation executes on a single processor. More
precisely, a codeblock invocation executes on a single processor. A procedure is usually one codeblock, but
there are exceptions. When interior procedures are lambda-lifted out of a procedure definition, they constitute
separate codeblocks, as do inner loops, so that they can be spawned among processors. Occasionally in the
document, I provide simplified explanations whose exact details are fleshed out later.

'Throughout this document, I use "fork" to mean enabling a continuation on the current processor and
"spawn" for enabling a continuation on another processor.

7

it is written into the message queue. When the message gets to the head of the queue, its first

word is loaded into the instruction pointer, and a pointer to the base of the message is loaded

into an address register so that subsequent words may be accessed. Execution continues se-

quentially until an explicit suspend instruction. The first J-Machine is expected to be built

within a year and will have thousands of processors. For my research, I used a simulator of

a 32-node J-Machine [Horwat and Totty 1987]. See [Dally et al 1988b] for a more complete

description of the Message-Driven Processor.

1.2 Overview

In Chapter 2, I provide an overview of how the code is executed on the J-Machine, describ-

ing the run-time structures and control structure transformations. Chapter 3 describes my

compiler and how it fits on top of the Id-to-hybrid compiler, as well as showing the code

production templates. Chapter 4 provides benchmarks, including an extended example of

the transformation and execution of a simple factorial program. Chapter 5 is the conclusion,

presenting my retrospective opinions on the project and describing ways in which it could be

improved. The appendices include program examples and source code.

8

Chapter 2

Executing Hybrid Code on the

J-Machine

The villainy you teach me I will ezecute,

and it shall go hard,

but I will better the instruction.

- William Shakespeare, The Merchant of Venice, Act III, scene i, line 76.

Because Id is designed for dataflow processors - its nane stands for Irvine Dataflow -

its run-time demands are different from those of traditional imperative languages designed

for von Neumann processors. On dataflow architectures, such as the Tagged-Token Dataflow

Architpcture and Monsoon, instructions are scheduled individually as soon as the data de-

pendences have been satisfied. It would not be reasonable to attempt to imitate this on a

non-dataflow architecture: When I hand-compiled Id programs onto the J-Machine with such

a strategy, overhead was extremely high. For a typical dataflow instruction, such as plus, with

two sources and two sinks, 20 MDP instructions were executed [Spertus 1989].

One of the major goals of compiling any language is to do as much work as possible at

compile-time, leaving a minimum of work for run-time. Thus before running dataflow code

on a von Neumann processor, the compiler should sequentialize sequences of instructions as

much as possible. In [Traub 1988], a method of sequentializing regions of code into threads,

or scheduling quanta (SQs), is presented. This lessens the amount of run-ti.e overhead

9

considerably; however, it does not reduce it to zero. Because it cannot be determined statically

what order the SQs must run in - if it were known, the SQs would already have been combined

- some run-time scheduling is necessary. Specifically, SQs are explicitly forked as soon as

the necessary data might be present. They may begin executing any time thereafter. Within

a SQ, checks are performed to see if necessary data is present. If it is not, the SQ suspends,

to try again once the data is received. Run-time support is necessary for these operations.

In this chapter, I describe the run-time behavior of the programs at a detailed but relatively

high level. I go into lower level detail in the following chapters.

2.1 Overview

Program execution on the J-Machine is based on the same ideas as on the hybrid architecture:

Instructions are grouped into scheduling quanta subject to the following constraints:

1. The program yields the same results as pure dataflow computation.

2. No deadlocks are introduced.

3. An instruction with unbounded latency must not be within a SQ.

Because I work with the scheduling quanta produced by lannucci's compiler, I inherit the

assurance that the partitioning yields correct and terminating results [lannucci 1988, Chapter

4].1 As lannucci did, I divide all unbounded-latency tasks into multiple phases so that other

tasks can execute between initiation and fulfillment of a request.

When a codeblock is invoked, a contiguous region of memory called a frame is allocated

for its arguments and scratch variables. The frame is given a unique global name. Because

each invocation has its own data area, the same procedure can execute multiple times on one

processor, with execution of the invocations interleaved. After a codeblock starts executing,

it will probably fault on a slot in its frame - i.e. it will look for a value in a specific slot of

the frame, but the data will not be present. In this case, a continuation is created encoding

the code address and is stored into the offending slot. When the data arrives, the data will be

'It is not entirely true that I use the SQ divisions unchanged. As will be discussed in the next chapter,
there are a few cases in which I tweak SQs.

10

Frame of Caller
Frame of Calee

0:
1: (empty) 0

2: 5

3: true

4: (empty) Continuation List

Figure 2-1: Rim-Ti-me Data Structures. Slots 1 and 4 of the callee's frame are empty, signifying
that the corresponding data values have not arrived yet and have not been requested. The
data for slots 0, 2, and 3 have arrived. Slot 0 points to the caller's frame so that the return
value can be sent there. The data for slot 5 has not arrived. The presence of a continuation
list indicates that instructions in the codeblock have tried to access slot 5. When the data
arrives, the SQs indicated in the codeblock will be restarted.

written into the frame slot and the continuation will be re-enabled. When all of the SQs in a

codeblock have successfully completed and any return values have been sent to the caller, the

frame can be freed. These structures are shown in Figure 2-1. The following sections describe

them in more detail.

2.2 Data Structures

2.2.1 Codeblocks

A codeblock consists of one or more scheduling quanta stored contiguously on each processor

on which the procedure might be invoked. Unlike [Horwat 1989], code is distributed at load-

time. The format of a pointer to a codeblock is shown in Figure 2-2. A user-defined tag value,

CB, is used to indicate a pointer to a codeblock. 2 The low sixteen bits of the descriptor hold

'In this context, "user-defined" means defined by my datafiow system, as opposed to the hardware-specified

tag types on the MDP. The MDP has 9 pre-defined tag types and 4 user-defined types.

11

Is -4 2 -+4 1 Is ,,
Codeblock pointer I CB I Local address I Frame size

Codeblock SQ 1

S02

SO N

Figure 2-2: A Pointer to a Codeblock. The user-defined tag CB denotes a pointer to a
codeblock. The low sixteen bits tell how large a frame must be allocated for the codeblock to
execute. The high sixteen bits tell where the codeblock can be found.

the number of words of storage required for each invocation, and the high sixteen bits hold

the address of the first SQ in the codeblock.

2.2.2 The Data Stack

Memory is allocated from a stack, initialized to null cfutures. A cfuture is a MDP data type

on which most instructions fault. Thus, slots are pre-initialized to "empty". A heap would

be a more efficient representation because memory could be freed and reused, but not enough

time was available to implement one. The three run-time data structures allocated from the

stack are frames, continuations, and I-structures, described in the following sections.

2.2.3 Frames

For a codeblock to execute, it needs a frame, a contiguous block of storage initialized to

null cfutures (i.e. to empty). A pointer to the base of a frame is called a frame descriptor.

Figure 2-3 shows a frame descriptor and a procedure frame. A user-defined tag value, FD,

is used to indicate a pointer to a frame. The low sixteen bits of the descriptor hold the

node number, and the high sixteen bits hold the local address, combining to provide a global

address. Storing the node number in the low sixteen bits provides an efficiency bonus on the

J-Machine as first described in [Horwat 1989, page 681.

12

;5 3A 311 16 1S

I FID ILoc address NuleNumber

0: FD of caller

1: ISD of Argument Chain

2: unused

3: Last Argument

First Argument
First Scratch Slot

Last Scratch Slot

Figure 2-3: A Non-Loop Procedure Frame. A user-defined tag, FD, denotes a frame descriptor.
It encodes the unique global address of a frame. The first slot of a frame holds a frame
descriptor indicating where to send return values. The next slot holds the address of the I-

structure chain of arguments. In some cases, the arguments can be passed directly in argument
slots. The remaining slots are used for scratch values during the procedure's execution.

Slot 0 of the frame holds a frame descriptor telling where to send any return values.

Some subtleties are involved in whether the arguments are passed in argument slots or as

an I-structure chain. I retain lannucci's conventions, and the interested reader is referred to

[lannucci 1988, pages 111-113]. The additional slots present in codeblocks with loops will be

discussed in Section 2.3.3. Except for how I handle loops, my frames are identical to those

used by Iannucci. The base of the frame currently executing is always kept in MDP address

register A2. Taking all frame accesses relative to A2 allows multiple invocations of a procedure

to run on the same processor.

2.2.4 Continuations

When an attempt is made to read an empty frame slot (i.e. a cfuture), a fault occurs whose

handier does the following:

1. Stores a request to restart the SQ when the data arrives.

2. Suspends, in order to let another SQ execute.

13

In producing code, I ensure that at the time of a cfuture fault, the MDP register RO holds a

message indicating where execution should restart. I also take advantage of the MDP's always

storing the absolute address of the last memory access in the MAR register. This allows the

fault handler to determine which piece of data was missing. The handler allocates a triple

(i.e. three words) from the stack and sets them to the following:

1. A message indicating where execution should restart (taken from RO).

2. The base of the current frame (taken from A2).

3. A pointer to the next continuation (if any) waiting on the faulted location. This is the

old value of the slot.

The address of the triple is tagged as a cfuture and is written into the data location for which

the fault occurred. 3 When the data arrives, the slot is checked just before the data is written.

For every continuation present, the indicated message is sent and the continuation freed. 4

Because codeblocks execute within one processor, the message is sent from the processor to

itself. J-Machine routing is done in such a manner that this is a cheap operation. Allocating

and filling a continuation after a fault takes 18 cycles. Writing to a frame slot takes 7 cycles

if no continuations are waiting and 8 + 6 * w, if w continuations are waiting.

An Alternate Method for Continuations

I considered an alternate method of keeping track of suspended continuations. Instead of

storing the continuation in a tuple allocated from the stack, the system could immediately

send the message indicating where execution should restart, effectively putting it at the end

of the local message queue. When the message reaches the head of the queue, it is tried again.

If the data has arrived, it executes successfully (or at least until the next fault); otherwise, it

will throw itself on the queue again.

This method has several advantages:

1. It seems to fit more elegantly on top of the J-Machine, taking advantage of the message

queue provided.

-To be precise, a quadruple is sometimes needed instead of a triple, as will be explained in Section 2.3.3.
4 Due to the primitive memory management of my system, the locations are freed in concept only.

14

3p 5 2 1 1 # IS p
IITAG I Local address I Node numberI

Lower bound

Upper bound
First datum

Second datum

Figure 2-4: An I-Structure Descriptor and Storage. An I-structure descriptor includes its type
and a global address that points to a block of storage, holding the bounds and the data.

2. Message suspension executes more quickly.

3. There is no need to check a frame location before writing a value to it.

The disadvantages, however, are major: A SQ could restart and fail many times, using an

unbounded number of machine cycles. Additionally, the MDP message queue could overflow.

For these reasons, I decided not to use this method.

2.2.5 I-Structures

I-structures are defined in Section 1.1.1. To review, they are array-like data structures whose

entries can be written once. Reads before writes are silently deferred. (This shows one of the

reasons high latency toleration is necessary.) I-structures are allocated explicitly by the user

and implicitly for argument chains for procedure calls. Due to time constraints, I-structures

are not handled by my compiler; however, I did develop and test the translation methods that

would be used.

Figure 2-4 shows how I-structure descriptors and storage are implemented. I-structure

descriptors are built analogously to frame descriptors, using the user-defined tag name ITAG.

The low and high bounds of the I-structure are stored at the base of the region of storage,

after which the data appear sequentially.

For a given cell of I-structure storage, there are three possible states, corresponding to the

non-error states in Figure 1-1. The possibilities, and how they are indicated, are:

1. Empty, indicated by a null cfuture.

15

Figure 2-5: An I-Structure. The lower and upper bounds of this I-structure are 5 and 8,
respectively. When a read or write request arrives, a run-time error occurs if the passed-in
offset is out of bounds. If not, the lower bound is subtracted from the p -ssed-in offset, and
the corresponding cell is examined. In this example, data has been written to I[5] and I[7),
there have been no attempts to read or write 1[61, and there have been two reads to I[8) that
will be satisfied when the data arrives. Writing to a slot more than once is a run-time error.

2. Waiting for data, indicated by a cfuture whose value points to a local linked list of

continuations needing the data.

3. Full, indicated by a non-future (i.e. the data itself).

The continuations are of the same form as desc,"' "n Section 2.2.4. An example of an

I-structure is shown in Figure 2-5.

Writing an element of an I-structure takes 20 + 6 * r instructions, where r is the number

of pending requests. The read handler taeiqe .":structions if the data is present and 30

if it is not. These times include comparing against the bounds, subtracting off the lower

bound, ensuring that no more than one write is done, and allocating any memory needed for

continuations.

2.3 Control Structure

2.3.1 Execution Within a Codeblock

To see how execution proceeds within a codeblock, let us review the example block from

Section 1.1.1. It is reproduced in Figure 2-6. Consider the possible orders of evaluation:

* Ifx >0, b- bb-a---*aa c.

* IfX <0, a -- aa- b ---bb -- c.

16

dot abc x =
{p x > 0;

a = it p then bb else 3;

b = if p then 4 else aa;
aa= a + 5;
bb b + 6;
c= a + b;

in

C);

Figure 2-6: A Statically Unschedulable Codeblock. It is impossible to determine the order in
which a, b, aa, and bb must be computed without knowing whether z > 0.

Observe that in both cases, b precedes bb, a precedes aa, p is the first calculation, and c is the

last. Using these stAtic dependences, we partition the code into three scheduling quanta, as

shown in Figure 2-7.1

Let us consider the case where z > 0. P is the first SQ to execute. As shown in Figure 2-8,

it computes p then forks A, B, and C, in that order, and suspends. A begins, then suspends,

because bb is needed but not available. B, next in the queue, begins and executes to completion.

When it stores bb, it sees that A is waiting on the value and sends a message to restart A. C

then begins executing and faults on a, suspending. The second attempt to execute A is now

at the head of the message queue and completes, sending a request to restart C. C executes,

performing the addition and whatever else follows (such as returning the resulting value).

The astute reader will have noticed that the sample procedure could be reduced to

def abc x =

if x > 0 then
14

else

11;

Despite this possible compile-time reduction, the example is still relevant for two reasons:

First, the early stages of the compiler are not sophisticated enough to perform the reduction;

second, examples exist for which no such reduction is possible. For example, if in the original

'Throughout the text, partitions are simplified to provide a more intuitive understanding than would be
gained by going into the exact details on how a SQ is produced.

17

P:P<-X> 0

A: ifpthen B: if then<- bb 9 <- 4
else else

a <- 3 b <- aa

Laa <- a + 5 bb -c- b +6

C:l c<-a~b

Figure 2-7: Scheduling Quanta for Unschedulable Example: The code in Figure 2-6 is divided
into four scheduling quanta. The calculations for b and bb appear in the same quantum because
bb depends only on b. It is impossible to determine statically whether SQ A or B executes
first. Arrows indicate that one SQ forks another.

X 5 X 5 X 5

p p true p true
a a a
aa aa aa
b b b

C C C

Queue: P Queue: P A B C Queue: P A B Ct t t

x 5 x 5 x 5

p true p true p true
a a --- a lo
aa aa aa 15
b 4 b 4 b 4

bb 10 bb 10 bb 10

C C C

Queue: PA B C A Queue: PA B C A Queue: PA B CA C

Figure 2-8: Snapshots for Codeblock Example. This shows snapshots of the message queue
and frame before each SQ for the program in Figure 2-6.

18

Processor A Network Processor B
Initate getcontext request context request

context value Aloaealoa.otx

":" , Start executing procedure

lime Send argument argumentvalue MM

retrnvau -. ' ' .. Resume procedure execution

~Locally free the context

Use returned value

Figure 2-9: Procedure Linkage Example. Processor A requests a context on processor B. As
soon as the frame is allocated, execution of the procedure call begins on B. When A receives
the context value, it can send the argument(s), after which B can complete. Shaded rectangles
indicate time that could be spent on other tasks. Note that those tasks are not interrupted
when data arrives.

program (Figure 2-6), the bindings for a and b were changed to a = f x bb and b = g x

aa, where f and g are passed in as parameters, no compile-time reductions would be possible

[Traub 1989, page 2].

2.3.2 Procedure Calls

Figure 2-9 shows how procedure linkage is done without tying up either processor. When

processor A wants to call a procedure on processor B, A must allocate a context (frame) on

B for the codeblock's arguments and scratch area. Allocating a context has the side effect of

starting execution of the first SQ in the procedure. After the address of the frame is returned

to A, it sends the arguments to B, which will have faulted if the data was already needed.

When the data arrives on B, suspended SQs are restarted. After B completes, it sends the

'turrn value (if any) and a signal to A, and it frees its frame. Note that other processes can

execute while A and B are waiting for data.

While it would be more efficient in most cases for a caller to be abie to send arguments at

the same time as requesting the context, there was no clean way to do this. An interesting

19

effect of this policy is that (as in other Id implementations) a procedure can conceivably

do substantial calculation or even return a value before receiving any arguments! This is

necessary because procedure calls in Id are non-strict.

Currently, the system does not do any load-balancing, and it always spawns procedures

to the same processor. The user must adjust the compiled code to provide a distribution

appropriate to the problem.

2.3.3 Loops

As in all other implementations of Id, I provide a way for different iterations of a given loop

to execute at a time. Because iterations of an outer loop execute on the same processor, they

do not execute concurrently; instead, the SQs of up to K iterations of a loop are enabled at

a time, where K is the loop-unfolding constant. When a calculation within one iteration is

waiting for something, such as the result of a procedure call to another processor, instructions

from other iterations may execute, subject to data dependences. Because up to K iterations

may execute at once, there must be K places to store each intermediate value, so this method

requires allocating K iteration areas. In [Iannucci 1988, Section 4.3.5), Iannucci presents and

proves the correctness of a method for dynamically unfolding loops which guarantees the same

results as sequential execution. I use hl!; method, although I implement it differently.

Concepts

In lannucci's method, an iteration includes the evaluation of the predicate and subsequent

execution of either the loop body or the loop termination code. He observes that for iteration

i to begin, three conditions must hold:

1. The predicate for iteration (i - 1) has been evaluated to "true".

2. The (i - K)th iteration has terminated, allowing us to reuse its iteration area.

3. The (i + 1 - K)th iteration must have already consumed its loop variables.

The third condition is the most subtle. It exists because iteration i will write the values of

loop variables into the slots of iteration i + 1. Hence, iteration i cannot execute until iteration

i + 1 - K is done with the values currently stored in these slots.

20

31262524 23 1 7
Next Iter Cur Iter Prey Iter

Import Flag

IPC Flag

Figure 2-10: Possible Implementation of an Iteration Descriptor. The iteration fields hold the
offsets from the frame base of the next, current, and previous iteration areas. The Import and
PC flags tell whether this iteration may begin. Bits 26 through 31 are unused. This format
was not used.

These rules are enforced with two flags, PC and import. Iteration i's PC flag is set when

the first condition, that the predicate for iteration i - 1 is true, has been established. The

import flag is based on condition three; it is set when the next iteration area is ready to

import new loop variables. In [Iannucci 1988, pages 129-131], Iannucci proves that the rules

for the two flags cover all three conditions. When both of an iteration's flags are true, its first

SQ (presumably to compute the predicate) may be enabled.

Implementation

lannucci's hybrid architecture supports loops with several special-purpose instructions and

hardware support. Specifically, iteration descriptors, containing the two flags and pointers

to the previous, current, and next iteration areas, can be stored in one machine word. As

Figure 2-10 shows, it was possible to store all these quantities into the MDP's shorter (32-bit)

words, but, lacking hardware support for accessing these fields, shifting and masking were too

slow. Additionally, in the small amount of space available for each iteration pointer, it was

only possible to store offsets relative to the current frame, not absolute addresses, which would

be more convenient. Hence, I decided not to mimic the hybrid architecture's implementation,

and I developed my own data structures.

Figure 2-11 shows a frame for a procedure with a loop. In addition to the slots found in

non-loop frames (see Figure 2-3), it has slots for the loop-unfolding constant, loop constants,

21

FD of caller
ISD of Argument Chain

K (loop unfolding constant)
Last Argument

0
0

First Argument

First Loop Constant

Last Loop Constant

First Scratch Slot

Last Scratch Slot
Pointer to Iter Area -1

Pointer to Iter Area K
Area for Iters 0 mod K

0

Area for Iters K-1 mod K

Figure 2-11: A Loop Procedure Frame. Loop procedure frames have several sets of slots in

addition to those present in non-loop frames. Slot 2 holds K, the loop-unfolding constant. K

specifies how many iterations may be unrolled. There is space for loop constants, values that

could be hoisted out of the procedure's loop. Iteration areas are used for circulating variables

and each iteration's temporaries. The pointers allow quick access to each iteration area.

iterations areas, and pointers to the iteration areas. Each iteration area's flags are stored

within its pointer. The pointers to iteration areas can be viewed in a more conceptual way in

Figure 2-12. In order to support iterations, an additional piece of data, an iteration number

between 0 and K - 1 must be included in every continuation. When a loop SQ begins, the

iteration number is used to find the pointer to the current iteration area. This pointer is

stored in MDP address register Al. Slots relative to the current iteration area can then be

indexed off Al. If it is necessary to access a slot in the previous or next iteration's area, the

iteration number is decremented or incremented to find the appropriate pointer from the table

of pointers within the frame. This is why there are K + 2 pointers to the K areas; i.e., if

iteration 0 is active and wants to set the previous iteration's import flag, the pointer can be

retrieved without providing a special check for the boundary condition. The import and PC

flags are stored within the pointers.

As an example, consider the procedure in Figure 2-13 to sum the results of a function

evaluated on the first n positive integers. The circulating loop variables are count and total.

22

Pointer to ter Area -1

Pointer to her Area 0 -ter Are 0

Pointer to her Area 1 -

Pointer to her Area K-1 Iter Area K-1

Pointer to Iter Area K

Figure 2-12: Iteration Areas and Pointers. Pointers to the iteration areas are stored con-
tiguously from a known offset within the frame. Having K + 2 pointers to the K iteration
areas is an optimization: If the current iteration number is 0 and the need arises to access the

previous iteration area, the pointer can be found in a straightforward manner, i.e. by looking
one slot earlier than the pointer to the current iteration area. This eliminates costly boundary
condition checks. The PC and import flags, not shown, are packed into the high bits

def combine n f =

f total = 0

in

for count <- I to n do
next total = (f count) + total

finally total J}

Figure 2-13: Loop Program Example. Procedure combine applies function f to the first n
positive integers, summing the results. For example, (combine 10 square) would return the
sum of the squares of the numbers from 1 to 10.

23

1. Initialize the K iteration pointers.

2. Set the import flag of each iteration area.

3. Set count to I and total to 0 in iteration area zero and reset area K - 1's import flag to
ensure that area zero gets to read count and total before they are written over.

4. Set area zero's PC flag, which will enable it, as the import flag is already set.

5. For each enabled iteration,

(a) Compare count to n.

(b) If count < n then

i. Write count +1 into the first slot of the next iteration area and set its PC flag.
ii. Spawn (f count).

iii. Add the result of the previous step to total, writing the result to the total slot
in the next iteration area.

iv. Now done with all incoming circulating variables, set the previous iteration
area's import flag.

(c) If count > n then write the current value of total to a frame slot outside the iteration
areas.

6. Once the final result has been written to the outside frame slot designated for the finally
value, pass it up to the caller.

Figure 2-14: Pseudo-Code Produced for Loop Example

Pseudo-code corresponding to the code that would be produced is shown in Figure 2-14.

Figure 2-15 illustrates how this scheme reveals possible parallelism. Up to K invocations of

f will execute at once. If f is slow, this is a big win.

The reader will observe that this scheme does not address nested loops. Those are pulled

out of procedures at compile-time and form new codeblocks that will be called by the original

procedure. Thus inner loops can execute in parallel on separate processors.

Because of a bug in the Id compiler's interaction with lannucci's code, I was unable to

have my compiler support loops. (The version of the Id compiler currently used is different

from the one Iannucci wrote his system to interface with.) For my research, I hand-compiled

loop procedures to explore the different methods of implementation.

24

Area 0 Area 1 Area 2

count 1
total

context for f call
result of f call

count1 2
total

context for f call
result of f call

count 1l 2
total 0
context for f call

result of f call

Figure 2-15: Snapshots for Loop Example. The snapshots show how the contents of the first
three iteration areas for the program in Figure 2-13 change over time. The first snapshot shows
the values in the iteration areas after they are initialized. The only non-empty locations are
the initial values for count tmd total in iteration area 0, which has been enabled, as indicated
by the darkened border. In the second snapshot, the first iteration has tested the predicate,
written an incremented count into the next iteration area, and has made the function call. In
the third snapshot, the second iteration does the same. Note that the function calls execute
in parallel.

25

2.4 Conclusion

Conventions were found to allow Id code to run on the J-Machine in the same style used by

lannucci on the hybrid architecture. The benefits of this strategy are:

1. Frames allow dynamic dataflow, i.e. every invocation has its own data area.

2. SQs reduce the amount of necessary run-time scheduling.

3. Using multiple phases for instructions with unbounded latency frees the processor for

useful work.

4. Loop unrolling exposes and exploits parallelism.

These powerful techniques are supported at run-time by special data structures, fault handlers,

and library routines. The next chapter describes the compile-time work necessary to convert

from hybrid format to MDP format.

26

Chapter 3

Compilation

I have heard of your paintings too, well enough;

God has given you one face,

and you make yourselves another.

You jig, you amble, you lisp...

- William Shakespeare, Hamlet, Act HI, Scene i, line 150.

Because the MDP architecture is so different from the hybrid architecture, substantial

work must be done to create MDP code from hybrid code. Keeping with the philosophy of

the original ID compiler, described below, I perform my transformations in several stages.

The intermediate forms my compiler recognizes or produces are:

" Hybrid code.

" Complex MDP code, machine instructions whose opcodes are the same as those on the

MDP (with a few extensions) but whose addressing modes, etc., are not legal.

" Simple MDP code, s-expressions of legal MDP instructions.

" MDP assembly code.

My back-end converts from the first form to the last. The rest of the chapter describes this

process.

27

Filer D g Asis Lambda ProgramPasrAai fting Graph Parse

Generation Trees

Substitution Elmiato Subexpression Elimination
Elimination
and Hoisting

Program
Priing Constant Codeblock Signals and Graphs

Propagation Partitioning Triggers

Macroinstruction I-o Frame Slot- MachineCode
Expansion Assignment Generation

so] HybridOptimization
Code

HybiM 1;1!d'1to1 Complex JSimple J

Complex a' to Siple to Asm

Figure 3-1: Structure of the Id-to-MDP Compiler: Plain roman text indicates modules of the
original Id-to-hybrid compiler, italics indicate modules I changed, and bold indicates modules
I added. Program graphs are a form of dataflow graph. This picture is modeled after one in
[lannucci 1988, page 97].

The original Id compiler is written in Common Lisp and is based on the Dataflow Compiler

Substrate [Traub 1986b], a set of abstractions for building modular compilers. Each module

inputs and outputs a stream of Lisp objects (except for the first and last modules which only

emit or collect, respectively). Figure 3-1 shows how my modules fit on top of the Id compiler.

Figure 3-2 shows the formats of instructions flowing through all of the new or changed stages.

They will be explained in more detail below. The appendices contain complete listings of the

files I created.

28

TyMe of Stream Description

Program Graph I Dataflow Graph Nodes

SMachine Code Generation
I

VND * lannucci's internal hybrid format

Assembler

Hybrid A stream of hybrid instructions

Hybrid to Complex J
Complex MOP Instructions with MOP operators (or one of a

few pseudo-ops) but illegal operands

Complex to Simple J

Simple MOP Legal MOP instructions in s-expression form

Simple J to ASM

MOP Assembly Legal MOP assembly code

Figure 3-2: New and Modified Compiler Stages: Dataflow code flows through several stages
in order to become MDP assembly code. The term "VND" is used to distinguish Iannucci's
internal representation of code from my "hybrid" format. The ellipses between the first two
stages indicate that other stages go between them.

29

3.1 Changes to Machine Code Generation

The machine code generation module, called generate-vnd-instructions and written by Ian-

nucci, takes program graph instructions and converts them to hybrid instructions. In some

cases, such as for arithmetic instructions, the transformation is trivial. For conditionals, loops,

and procedure calls, however, a single program graph instruction expands into many hybrid

instructions. Because my control structure transformations for loops and procedure linkage

differ from Iannucci's, I wrote a file changes.lisp that replaced his templates for loops and

procedure calls with my own.

3.1.1 Loops

Originally, for the loop program graph instruction, instructions were generated to support the

hybrid architecture's implementation of loops. Section 2.3.3 describes how my implementation

differs. I emit different hybrid instructions for the loop set-up instruction to initialize the

iteration area pointers. Code within loop SQs is passed through unchanged, to be converted

in later stages of the compiler, as only structural changes are made in this module.

3.1.2 Procedure Calls

Section 2.3.2 described my multi-phase convention for procedure linkage, but it glossed over

a few details. Specifically, my implementation differs from the hybrid one in an important

way: On the hybrid architecture, the get-contezt instruction calls a local manager that selects

a frame on another processor where the procedure can be spawned [Iannucci 1988, page 174.

This requires a processor to know memory usage on other processors. When designing the

system for the J-Machine, I decided each processor should know as little as possible about the

other processors, particularly because the J-Machine is massively parallel. One consequence

was that I rejected this scheme. Instead, I changed the protocol so that get"ontezt is a two-

phase instruction, where the calling node, A, asks the called node, B, for a frame address.

The complete calling protocol is:

1. Execute a get-contezt instruction on A. This sends a request to processor B to allocate a

frame and start execution of the appropriate procedure, and to send the frame descriptor

30

F back to processor A.

2. Compute the return location for the procedure call (an offset into the current frame)

and send it to B, attached to F. Because F is the frame descriptor, B will know where

to put the return location.

3. Send each of the arguments to B, attached to F.

If get-contezt were merely local, no data faults would occur during the first three steps; hence,

the value for the return location could be written into a register instead of a more permanent

place like a frame slot. In my strategy, a fault will occur during step 2 because F is not locally

available yet. Hence, I must insert a suspensive check for F before the second step. This way,

it will be safe to store the return location into a register. There will be no danger that a fault

will occur on F between the time the register is written and when the register is accessed to

send its value to B. (The values in registers are not guaranteed between suspensions, and it

would have been too difficult for me to change the hybrid compiler's frame allocation.)

Even this is not the whole story. Consider a doubly-recursive procedure like a naive

implementation of Fibonacci. Figure 3-3 shows the code that would be produced by the J-

Machine strategy just described. The problem with this code is that the second get-contezt

request would not be made until after the first one returns. This introduces unnecessary

dependences, as it implies that steps 5-8 in the figure cannot occur until steps 1-4 are finished.

This was not a problem on the hybrid architecture, where it was known that steps 1-4 would

not suspend. Because step 2 will suspend, steps 5-8 will be delayed unnecessarily. This is

illustrated in Figure 3-4. The arrow indicates the short-cut that exists: The second request

can be started immediately after the first. Hence, before the suspensive check, we add an

instruction to fork a continuation corresponding to whatever follows the procedure call -

essentially splitting the SQ.

3.2 Assembling Hybrid Code

The last stage of lannucci's compiler is an assembler that converts his internal representation

of hybrid code into one suitable for his interpreter. I modified this stage to produce a stream

of hybrid instructions suitable for my stages.

31

1. Execute get-context for the first recursive call. The value for the frame F1 will be
returned at some unknown time.

2. Make a suspensive reference to FI, so that we can't get to the next step unless it has
arrived.

3. Compute the return location for the first procedure call and send it to B1 attached to
Fl.

4. Send the arguments to B1 attached to Fl.

5. Execute get-context for the second recursive call. The value for the frame F2 will be
returned at some unknown time.

6. Make a suspensive reference to F2, so that we can't get to the next step unless it has
arrived.

7. Compute the return location for the second procedure call and send it to B2 attached
to F2.

8. Send the arguments to B2 attached to F2.

Figure 3-3: A Non-Optimal J-Machine Calling Convention. BI and B2 represent the two
processors on which the subprocedures are spawned. The code is non-optimal, because F2
would not be requested until after F1 had been received.

32

Request Fl.

Perform a suspensive check on Fl.

Send the return location with F2.

Send the arme,.nts with F2.

Figure 3-4: The Ordering Specified by Successive Function Calls. Unless the first instruction
explicitly forks the second request, as show by the arrow, code will execute sequentially as

indicated by the plain lines. This unnecessarily lessens the amount of exploited parallelism.

3.3 Convert Hybrid to Complex J

"Complex J" code is an intermediate format that is relatively easy to produce from hybrid

code. The steps for converting an instruction are:

1. If any operand is suspensive,

(a) Emit: (suspensive-instruction)

(b) For every possibly-suspensive operand a, emit: (suspensive-operand s)

(c) Emit: (suspensive-check-done)

2. Convert all references to hybrid general-purpose registers to references to temporary

storage on the MDP.

3. Emit code specified by the template corresponding to the hybrid instruction.

Below, I describe the different templates for classes of hybrid instructions, in order to provide

a deeper understanding of the hybrid instruction set as well as of the transformation process.

33

In this section, I go into considerable detail. Readers are prewarned, lest they fall off the

bottom of this depth-first search. Casual readers may wish to read the first few templates

and then skip to the conclusion of this section on page 39.

3.3.1 Label Instruction

The template for converting a label instruction is:

(detconversion label :label (label-name)
'((label ,label-name)
(move (:message (:base)) (:j-register A2))))

The first line generates a MDP label with the same name as the hybrid label. The second line

says to move the value at offset one from the current message, i.e. the frame address, into

MDP address register A2.1 That line is there because execution can begin at any label, and

A2 is always assumed to hold the base of frame pointer.

This example illustrates one of the differences between complex and simple MDP code:

On the J-Machine, one of the operands of a move must be a general-purpose register. The

above move will be broken into two moves in the next stage, convert-cj-to-sj. At this stage,

we do not have to concern ourselves with such details.

3.3.2 Simple Arithmetic Instructions

The template for converting an arithmetic instruction such as add is:

(detconversion j-add :+ (sl s2 d)
(append (lookup-into d)

'((add ,sl ,s2 ,d))))

The lookup-into routine generates code to restart any continuations waiting for a value to

be written to location d, as described in Section 2.2.4. First, the slot number is copied into

Rl, then the library routine lookup-vector is called. 2 Figure 3-5 shows the conversion of an

addition instruction.

1In the hybrid and MDP assembly formats, (move I B) moves the contents of I into B, not vice versa.
2 1n retrospect, explicitly mentioning the register to pass the argument in at this stage is an unnecessary

violation of abstraction.

34

(:add (:frame (:base 6) :suspensive)
(:literal (:integer 1))
(:frame (:base 7)))

(suspensive-instruction)
(suspensive-operand (:frame (:base 6)))
(suspensive-check-done)
(move 7 (:j-register R1))
(call lookup-vector)
(add (:frame (:base 6))

(:literal (:integer 1))
(:frame (:base 7)))

Figure 3-5: The Hybrid-to-Complex-J Conversion of an Addition. Execution will only get
past the suspensive-operand virtual instruction if slot 6 of the current frame is present.

3.3.3 Complicated Arithmetic Instructions

Some arithmetic instructions are more complicated, such as abs, min, and max, because they

are machine instructions on the hybrid architecture but not on the J-Machine. Thus they have

larger templates that use temporary registers. Figure 3-6 shows the template for abs. The

reserve and free pseudo-ops tell the next stage of the compiler where MDP registers should

be allocated. Without this facility, the conversion of templates requiring temporary storage

would be much less efficient. They will be discussed in more detail in the section on the next

stage of the compiler.

3.3.4 Move Instructions

The template for converting a move instruction is:

(defconversion move :move (source dest)
(append (lookup-into dest)
'((move ,source ,dest))))

If the destination is a frame slot, this generates code to restart any continuations waiting on

35

(defconversion j-abs :abs (s d)

(append (lookup-into d)

'((reserve (:register scratchl))

(reserve (:register scratch2))
(ash ,s -31 (:register scratchl))

(xor ,s (:register scratchl) (:register scratch2))

(sub (:register scratch2) (:register scratchl) d)

(free (:register scratchi))

(free (:register scratch2)))))

Figure 3-6: The Template for Converting Absolute Value. Two scratch registers must be
reserved for the optimal absolute value strategy. They are used for temporary values and are
freed at the end of the template. The reserve and free are instructions to later stages of the
compiler and do not directly produce any code.

the value and then performs the move.

The move-remote instruction moves a value into a slot of another frame. Its template is:

(defconversion movr :move-remote (frame-ptr offset value)

'((sendO ,frame-ptr) ; lode number

(sendO (:ref localmovr)) ; MSG word

(sendO ,frame-ptr) ; First argument: frame descriptor

(sendO ,offset) ; Second argument: offset within frame

(sendeO ,value))) ; Third argument: value to write

On the J-Machine, the first word of a send sequence is a number specifying the destination

node. The second word, the message header, specifies both how long the message is and the

address of the handler to receive it. The meaning of subsequent words is determined by the

handler.

To understand the above template, recall from Section 2.2.3 that the node number is

stored in the low sixteen bits of the frame descriptor. Because the router only looks at the

low sixteen bits, sending the frame descriptor specifies the correct destination node. When

the message reaches that node, execution will begin at the locaLmovr library routine, which

writes the passed value into the specified slot after checking if any continuations are waiting.

The move-remote instruction is typically used for passing arguments and return values.

36

(:test-1 (:frame (:base 6) :suspensive) (suspensive-instruction)
(:frame (:base 8))) (suspensive-operand (:frame (:base 6)))

(suspensive-check-done)

(move 8 (:j-register R1))

(call lookup-vector)

(move true (:frame (:base 8)))

Figure 3-7: The Hybrid-to-Complex-J Conversion of a Test-i. Despite the template's appar-
ently ignoring the source, the instruction is converted correctly. Before the template is even
considered, code is emitted to check for the suspensive operand.

3.3.5 Test Instructions

The hybrid architecture includes the test-1 and test-2 instructions to write true into the

destination if the source(s) are present. Execution should suspend if any source is unavailable.

The template for test-i is simply:

(defconversion tstl :test-i (sl dest)

(append (lookup-into dest)
'((move (:tagged-literal ,boolean-tag 1) ,dest))))

The transformation for test-2 is identical. The simplicity lies in how the converter handles

suspensive arguments: Before the template stage is even reached, code will have been emitted

to check suspensive operands and to suspend if they are not present. Figure 3-7 shows the

conversion of a test-i instruction.

3.3.6 Continuation Instructions

Two hybrid instructions exist to fork continuations. They are used to start SQs within a

codeblock. The template for the continue instruction is:

(defconversion cntn :continue (cont)
'((sendO (:j-register NR))
; Convert it from (:literal (:symbol :SQ-i)) to (:ref :SQ-1)
(sendO (:ref ,(second (second cont))))
(sendeO (:j-register A2))))

This sends a message from a processor to itself (the NNR register holds a processor's own

37

node number), along with the specified SQ base and the current frame pointer, kept in A2.

While the continue instruction is sufficient, it is non-optimal, in that the new continuation

is likely to immediately suspend on the first value it checks for. With this observation,

lannucci designed the continue-test instruction which tests the first slot accessed by the new

SQ. It the value is there, the continuation is forked as above; otherwise, a local continuation

is immediately created and stored in the appropriate slot. This saves a message send in the

worst - and most common - case. The conversion template is:

(dofconversion cntt :continue-test (check-slot cont)
; Convert it from (:literal (:symbol :SQ-1)) to (:ref :SQ-1)
'((move (:ref ,(second (second cont))) (:j-register RO))
(move (:literal ,(frame-base-offset check-slot)) (:j-register RI))
(call (:literal ,cntt-vector))))

This calls a local library routine, cntt, that does the check and, depending on whether or not

the data is present, either sends the message or stores the continuation. The cntt routine

expects RO to hold the SQ address and R1 to hold the number of the needed slot.

3.3.7 Procedure Linkage Instructions

The procedure linkage convention was described in great detail in Sections 2.3.2 and 3.1.2.

Briefly, there are three steps to spawning a procedure:

1. Initiate a get-contezt request, sending the codeblock descriptor and the address of where

to write the new context pointer.

2. Use indez-current-contezt to create a new global address for return values to be sent to.

For example, if the first return value should be sent to slot 8, index the current context

by 8.

3. Perform remote moves to transfer the indexed context and the arguments into the newly-

allocated frame.

The third step uses the move-remote instruction described earlier. The transformations for

get-contezt and inde:-current-contezt for the first two steps are described here.

38

Get-Context The transformation for the get-contezt instruction appears in Figure 3-8.

Rather than try to explain it here, I have added detailed comments to the code. As mentioned

earlier, no attempt at load balancing is made by the compiler. A library routine, get-contezt,

resides on every processor to use the information sent and to perform the callee's half of the

protocol.

Index-Current-Context The Indez-Current-Contezt instruction is slightly more compli-

cated. By convention, the n return values of a procedure are sent to the first n slots of the

calling frame. Because we really never want the return values sent to the start of the cur-

rent frame, we increment the current context and send that value to the callee instead. The

template is shown in Figure 3-9.

3.3.8 Conclusion

In the convert-hybrid-to.cj stage of the compiler, hybrid instructions are transformed into com-

plex J-Machine code. The transformations ignore the intricacies of MDP addressing modes,

making the transformation process simpler and more conceptual. Several pseudo-operators

for handling suspensive instructions and register allocation are used.

39

(defconversion geto :get-context (context-slot return-slot)
;; The first scratch register will be used to hold the global
;; frame descriptor of the calling frame, so that the callee

;; knows where to send the context value back to. Recall that

;; the format of a FD is that the local address is in the high
;; sixteen bits, and the node number is in the low sixteen.
'((reserve (:register scratch))
; Take the local address of the current frame from 12.
(move (:j-register 12) (:register scratch))
; Tag it as an integer (instead of an address) so we can minge it.
(wtag (:register scratch)

(:Literal ,int-tag)
(:register scratch))

; Shift it over 16, to fit into FD format.
(Ish (:register scratch)

(:literal ,(- 16 *sys-len-bits*))
(:register scratch))

Add in the local node number (i.e. put it in low 16 bits).
(add (:register scratch) (:j-register NNR) (:register scratch))
; Tag it as a FD.
(wtag (:register scratch) (:literal ,fd-tag) (:register scratch))

(sendO C:literal)) ; Send to node I always
(sendO (:ref local-getc)) ; Handler is the local-getc lib routine

(sendO ,context-slot) ; Send the codeblock descriptor.

(sendO (:register scratch)) ; Send the current FD, so it knows
(free C:register scratch)) ; where to send the context back to.
(sendeO ,(frame-base-offset return-slot)))) ; Send the return offset.

Figure 3-8: Transformation the Get-Context Instruction to MDP Code. The purpose of the
get-contezt instruction is to send off a request to allocate a context and return its value.

40

(defconversion ixcc :index-current-context (frame-base dest)

(append (lookup-into dest)

; A scratch register is needed

'((reserve (:register scratch))

; Move the local frame address into the scratch register
(move (:j-register L2) (:register scratch))

; Tag it as an integer so we can adjust it

(wtag (:register scratch)

(:literal ,int-tag)

(:register scratch))

; Add in the new base, shifted over into the address

portion of the instruction

(add (:register scratch)

(:literal ,(* (literal-base-offset frame-base)
(expt 2 *sys-len-bits*)))

(:register scratch))

Shift the sum into the top half of the word

(lsh (:register scratch)
(:literal (- 16 *sys-len-bits*))

(:register scratch))

Add the local node number into the low half of the word

(add (:register scratch)

(:j-register NR)

(:register scratch))

Tag it as a frame descriptor
(wtag (:Oregister scratch)

(:literal ,fd-tag)

(:register scratch))

Nove it into the specified destination.
(move (:register scratch) ,dest)

; Free the scratch register.

(free (:register scratch)))))

Figure 3-9: Transformation of Index-Current-Context. The purpose of indez-current-contezt
is to take the address of the current frame, conceptually add a constant offset to it, and
convert it to file descriptor format. It can then be sent to a spawned procedure as the frame
to return results to.

41

3.4 Convert Complex J to Simple J

This section is the most complex of the new modules. Its tasks include:

1. Converting literal operands into tagged literals.

2. Converting the suspensive-instruction, suspensive-operand, and suspensive-check-done

pseudo-ops into MDP code.

3. Allocating and substituting MDP registers where they were requested with the reserve

and free pseudo-ops.

4. Adjusting instructions to use legal MDP addressing modes.

We will examine each of these stages.

3.4.1 Converting Literals to Tagged Literals

Because all values on the MDP are tagged, references to literals must be changed to tagged

literals. The integer literal operands from the addition example in Figure 3-5 would both be

converted:

7 --* (:tagged-litoral int-tag 7)

C:literal (:integer 1)) -. (:tagged-literal int-tag 1)

Booleans and labels are similarly transformed.

The other type of "literal" used is a reference - a constant whose value is determined

at assemble-time [Horwat and Totty 1987, page 9]. References are used to denote codeblock

pointer values, addresses of suspensive instructions, and branch destinations. These are de-

noted with the imaginary tag name, "special-tag". These operands are converted to MDP

reference format in the last stage of the compiler.

3.4.2 Generating Suspensive Code

Before a suspensive instruction, several things must be done to ensure proper behavior:

1. Store the current instruction pointer location into RO, so if a fault occurs, the handier

will know where execution should resume.

42

(suspensive-instruction)
(suspensive-operand (:frame (:base 6)))
(suspensive-check-done)

(label (:tagged-literal special-tag (:label suspenasve19)))
(dc (:tagged-literal special-tag :suspensive19))

(move (:message (:base 1)) (:j-register A2))
(rtag (:frame (:base 6)) (:j-register R3))

Figure 3-10: Intermediate Code Produced for Suspensive Pseudo-Operands. The DC ("data
constant") instruction loads its assemble-time constant operand into RO. If the rtag ("read
tag") instruction faults, the handler can use the RO value to know where execution should
restart, as described in Section 2.2.4.

2. Because execution could be resumed here, SQ setup code must be emitted to load

the base of frame address into MDP register A2, i.e. (move (:message (:base 1))

(:j-register A2)).

3. Check whether each suspensive operand is present, faulting if not.

For the rationale behind these rules, refer back to Section 2.2.4, where the continuation format

was described. Figure 3-10 shows the conversion of the suspensive pseudo-ops in the add

instruction introduced in Figure 3-5. First, a unique label, created with the Lisp procedure

gensym, is emitted. A reference to it is loaded into RO with the DC ("data constant")

instruction. The frame base is loaded into A2, after which the tag of the suspensive operand

is read. If it faults, the run-time handler described in Section 2.2.4 will set up a continuation.

Although it would be more efficient not to explicitly read the tags of the suspensive

operands, it is necessary if the hybrid instruction has side effects. For example, a desti-

nation might be written or a message might be sent before a specific suspensive operand was

accessed. A later version of this compiler would optimize out the "read tag" instructions in

cases where the explicit check would suffice.

43

3.4.3 Allocating MDP Registers

MDP registers have two uses: passing arguments to system calls and holding temporary values

within hybrid instructions. When used for system calls, they are explicitly referred to as in

Figure 3-5 earlier. When they are used as temporaries, generally it does not matter which of

the four MDP general-purpose registers is used. The reserve and free pseudo-ops generated

by the templates in convert-hybrid-to-cj are used to create and destxoy bindings of symbols

to MDP registers. For example,

(reserve (:register scratch))

binds scratch to a free MDP register. Until a

(free (:register scratch))

is encountered, all occurrences of (: register scratch) are converted to (:j-register Rn),

where n is the register bound to scratch. Because no more than four temporary registers are

ever needed, no spilling needs to be done.

The only conflict arises because RO is different from the other GPRs. The MDP instruction

Dt loads a 32-bit quantity into RO. 3 Except for a few special values, only 7-bit quantities can

be specified as constants to move directly into the other registers. Thus there is an internal

compiler routine, request-appropriate-register that takes an argument specifying what will go

in the register and returns a binding to an appropriate register - i.e. RO if the argument is

a big value, another register otherwise. If RO has already been allocated, an instruction to

move the old contents of RO into another register is generated, and the previous binding to

RO is changed. This process is illustrated in Figure 3-11. 4

3.4.4 Converting to Legal MDP Operands

Instructions on the MDP are only 17 bits long. While this permits tight packing and quick

loading, it limits the operand space. Specifically, general-purpose registers are required as

'DC is more accurately an assembler pseudo-op. It must have a constant value for its operand which is
then put directly into the instruction stream. During execution, if the instruction pointer is at something that
is not tagged instruction, it is loaded into RO. This allows 32-bit values to be directly loaded into a register,
despite the normal 17-bit instruction length.

4Nate Osgood helped me develop this one-pass register allocation scheme.

44

Request Bindings Code Emitted

(request-appropriate-register 100) reg9l -> RO
reg91

(request-appropriate-register 11) reg9l -> RO
reg92 reg92-> R3

(request-appropriate-register 500) reg9l -> R2 (move (:I-register RO)
reg93 reg92 -> R3 (:j-register R2))

reg93 -> RO

Figure 3-11: Compiler Register Allocation. Requests for registers and the return values
are shown in the leftmost column. The binding names are generated by the Lisp gensym
procedure. The middle column shows the internal set of bindings after each instruction. A
conflict arises on the third request where R0 is needed but is already part of another binding,
reg9l. The register allocator emits code to move whatever has been placed in RO into a
previously-free register, R2. The binding for reg9l is then changed to R2, and the new
request can get RO.

operands to certain instructions, and only very short constants can be encoded in instructions.

Consider the following hybrid instruction:

(:add (:frame (:base 6))
(:literal (:integer 30))
(:frame (:base 7)))

There are two reasons why it cannot be encoded into one MDP three-operand instruction:

1. The first and last operands must be general-purpose registers.

2. If the second operand is a constant, it must be in the range [15...-16].

The above add instruction would be translated into four MDP instructions:

(move (:frame (:base 6))
(:j-register R3))

(move (:tagged-literal int 30)
(:j-register R2))

(add (:j-register R3)
(:j-register R2)

45

(:j-register R3))

(move (:j-register R3)
(:frame (:base 7)))

The astute reader will have observed that if the order of the source operands were changed,

they could be encoded into one less MDP instruction. I did not have time to incorporate this

optimization for commutative instructions.

As another example, consider a hybrid instruction to move an immediate into a frame slot:

(:move (:literal (:integer 500))
(:trame C:base 20)))

Because 500 is more than seven bits long, it must be loaded into RU through the DCinstruc-

tion:

(dc (tagged-literal int 500))
(move (:j-register RO)

(:frame (:base 20)))

Like immediates, offsets from the frame base can only be five bits in three-operand instructions

and seven bits in two-operand instructions. If the destination of the above move had an offset

of 100 insteai of 20, the code would be:

; (:movc (:literal (:integer 500)) (:frame (:base 100)))

(dc (t.agged-literal int 500))
(move (:j-register RO)

(:j-register R3))
(dc (tagged-literal int 100))

(move (:j-register R3)

(:frame (:base (:j-register RO))))

This illustrates the RU conflict maneuver described in Section 3.4.3.

3.5 Convert Simple to ASM

This last stage converts the code to a format suitable for the MDP assembler. This involves

converting from s-expressions into plain text and translating the operands into a suitable

format. Offsets are converted:

46

(:register (:base 1)) -+ [1,1O

(:frame (:base 1)) -- [I,A2]

(:message (:base 1)) - [X.A3]

The first transformation is to convert hybrid registers to temporary storage. On the J-

Machine, accesses off of AO are absolute addresses. The first twenty words of MDP memory

are devoted to temporary storage, so hybrid register n is stored at absolute address n on the

J-Machine. As on the hybrid architecture, the value is not guaranteed to be the same between

suspensions.

Additionally, assemble-time references must be output properly. When a reference is

encountered as an operand, it is converted:

(: tagged-literal special-tag X) -- {Lmsg.xef}

Additionally, X is added to a list of references. At the end of compilation, for each reference

X in the list, the following is output:

ref IXmsg.ref = MSG: (((C+Nloc)<<10))+2

where N is the name of the procedure. This creates a reference whose value includes the

absolute address of the associated label (labels are usually relative addresses), as well as

specifying that it will be used as a header of a message with two words. (The two words will

be the message itself and the frame value.)

3.6 Conclusion

In order to convert hybrid code to MDP assembly code, I created intermediate formats and

routines to convert from more complex formats to simpler ones. These are useful not only for

this compiler but as a general-purpose J-Machine utility. A MDP assembly coder or compiler

writer could produce complex J-Machine code and be spared the trouble of remembering how

many bits of operand are available for each instruction. While my register allocation is still

too primitive to give optimal results - for example, the same value could be stored in two

different registers - it is still good enough to provide a new dialect of MDP assembly language

that a programmer might choose for its greater abstraction and simplicity.

47

Chapter 4

Analysis

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the

running you can do, to keep in the same place. If you want to go somewhere else,

you must run at least twice as fast as that."

- Lewis Carroll, Through the Looking-Glass.

I am pleased with the system, in that it works and reasonable solutions were found for

every problem. However, while some of the mechanisms worked out well, not all turned out to

be as efficient as I would like. In this chapter, I provide a detailed example of code produced

and executed for an Id routine, several benchmark results, and analysis of both my system

and the J-Machine.

4.1 Det ,led Benchmark: Factorial

In this section, I will go into great detail by providing listings and statistics for a sample Id

procedure. Specifically, I will describe the composition and execution of the simple recursive

factorial program shown in Figure 4-1.

4.1.1 The Dataflow Graph

First, the initial stages of the compiler convert the program into a dataflow graph, such as the

one shown in Figure 4-2. I have abstracted away some of the details in order to highlight the

essential parts of the graph. First, the input arrives at node 1. It is passed through unchanged

48

fact n =
if n <= I then

n
else
a * fact (n-1);

Figure 4-1: Id Code for Factorial

1? 2

-1 5 et context 6

Figure 4-2: A Datafiow Graph for Factorial. If an integer n is input to the top identity node,
n! will be computed. The switch node uses its left input as a control signal and its right input
as data. If the control signal is true, data goes to the left output arc; otherwise, to the right.
The identity node copies its inputs to its output arcs. The dotted line from the call node
to the mu/ node indicates that the connection is indirect. The numbers are for expository
purpose only.

49

by the identity instruction to nodes 2 and 3. Node 2, the predicate, passes a boolean value to

node 3, a switch instruction. The semantics of the switch instruction are such that it passes

its data input to the left output arc if the control input is true, and to the right arc if the

control input is false. Thus, if the predicate is true - i.e. if the argument is less than or

equal to one - the argument itself will be sent to node 9 and returned. In the inductive case,

the argument is sent to identity node 4. Node 7, call fact, makes the recursive call, specifying

that the return value should be sent to node 8, mu/. When it arrives, the multiplication is

performed, and a value is sent to node 9 to be returned.

The purpose of showing and describing the graph is to give an idea of how the compiler

looks at a procedure. Iannucci's stages of the compiler can only see the dataflow graph, not

the source code.

4.1.2 The Hybrid Code

The hybrid code produced by the factorial example is shown in Figure 4-3. I have added

comments, lines headed with semicolons, to describe the process. Readers uninterested in

such technical detail should skip to Figure 4-4 which shows the SQs' composition at a higher

level. Figure 4-5 shows frame usage.

50

SQ-I does initialization, forks local SQs, and tries to return
;;th. result.

((LABEL (:LITEIR.L (:STMBOL :SQ.-1))))
;Put the codeblock pointer to FACT into [12).

((:OVE (iLITERAL (:CODE-BLOCK :FACT)) (:PRLM (:115 12)
;; Fork SQ 2, immediately suspending it if (3], a. is empty.
((COITIIUE-TEST (:FRAME (:31SE 3) :SUSPENSIVE) (:LITERAL (:STMBOL :SQ-2))))

;Fork Sq 11, immediately suspending it if (0].* the return location,
;~is empty.

((:CONTIU-TEST (:FRNH (:31St 0) :SUSPENSIVE) (:LITERIL (:SYMBOL :SQ-11))))

((:LBEL (:LITIRL (:STMBOL :SEND-RSULT-0))))
;; Pass [6], the return value, up to offset I from the calling frame.
((:MOVE-REqOTE (:FRAMK (:1SE 0) :SUSPENSIVE)

(:LITRAL (:INTERR 1)
(:FW((:31SE 6) :SUSPENSIVE))

;Pass (5], a signal ("true"), up to offset 0 from the calling frame.
((:MOVE-RMOTE (:FRAME (:31St 0))

(:LITEUAL (:INTEGER 0))
(:FRAME (:3151 5) :SUSPENSIVE)))

(:TIMINATE))

;;SQ-il sets [5), the signal, when locations [0] and [7] have data.
((:LABEL (:LITEIL (:STMBOL :SQ-11))))
((TRST-2 (:FR1NI (:31St 0) :SUSPENSIVE)

(:FI (:31St 7) :SUSPENSIVE)

((:TERMINATE))

;;; SQ-2 evaluates the predicate and runs appropriate code.
((:LI3EL (:LITKRAL (:STMBOL :SQ-2))))

Put in [4] the result of checking if [3] , the argument, is <- 1.
((<-(FIA1I (:315! 3) :SUSPENSIVE)

(:LITERAL (:ITEGIR 1)
(:FRAME (:1SE 4)))

;If not, branch to 11.51-4.
((:31ANCH-FJLSE (:FRAE (:1St 4)) (:LITERAL (:STMBOL :ELSE-4))))
;; Copy E31. the argument, into [6], the slot for the result.
((:MOVE-fIDENTITT (:FRAME (:31St 3) :SUSPENSIVE) :FRAME (:31St 6)
;; Copy (4], the predicate result ("true") into [7).
((:KGVE-rENTITY (:FWI (:1SE 4)) (:FRAM (:BASE 7)
;; Branch past inductive case code.
MBRAN1CH (:LITER.IL (:STMBOL :END-TF-4))))

;Continued on next page.

51

;Continuing from previous page.

;This code gets executed for the inductive case.
((:LABIL (:LITEUL (:STMlOL :RLSE-4))))
;Subtract 1 from E31, the argument, and put the result in [14].

(0:- (:71.111 (:115 3) :SUSPENSIVE)
:LITRIL (:INTBGER W)
(:75.511 (:1SE 14)

;Spawn the codeblock whose name is in E12) (fact), putting the context
;value into E103.

((:GRT-CONTEXT (:71111 (:DASE 12)) (:FRAME (:BASE 10)
:Specify (8) as the base location for return values for the
~spawned procedure.

((:INDE-CUSUNT-CONTEIT (:LITERAL (:1155 8)) (:UGISTER 0))
;Send this adjusted context (i.e. the return location) to slot zero
;in the spawned procedure.
(OOV-REOTE (:75111 (:51SE 10))

(:LITERL (:INTEGER 0))
(:UGISTER 0))

;Send (10], the argument minus 1. to slot three in the spawned procedure.
((:MOVE-1.EMOTK (:FRAI (:BASE 10))

(:LITKRLL (:INTEGER 3))
(:FRME BI5SE 14)

;Fork SQ-6. immediately suspending it if (3), the argument, isn't here.
((:CONTINUE-TEST (:FUMI (:3155 3) :SUSPENSIVE) (:LITERIL (:STMBOL :SQ-6))))
;Fork SQ-S * imediately suspending it if [8], the signal that the spawned
;procedure is done, isn't here.

((:CONTINUK-TEST (:FRAME (:BASE 8) :SUSPENSIVE) (:LITEJU.L (:SYMBOL :SQ-8))))
((:LABEL (:LIYERAL (:STNBOL :END-IF-4))))
(:TRIINITI))

;SQ-S frees the context of the spawned procedure if it's not needed
;any more.
((:LEL (:LITEIL (:STMBOL :SQ..8))))
;; Suspend if [81, the signal that the spawned procedure is done, is present.
((:TEST-1 (:71111 (:1151 8) :SUSPENSIVE) (:REGISTE. 0))
;; Return E10], the context of the spawned procedure, writing true into [11).
((:RK'URN-CONTEXT (:FRAJ1K (:1SK 10) :SUSPENSIVE) (:FDRlX (:BASE 11)
;; Copy [11], the true signal, into (T], a signal that all work is done.
((:MOVE-IDUNTITY (:73111 (:BISB 11)) (:FRAM (:BASB 7))))
((:TERMITE))

;; SQ-5 is spawned only for the inductive case.
((:LABEL (:LITERUL (:ST1OL :SQ-5))))
;Multiply (3], the argument, by (9), the value returned by the recursive
:;Call. Putting the result into [13).
((:e M (:1111(: E5 3) :SUSPENSIVE) (:FR1111 (:1SE 9) :SUSPENSIVE)

;Move this value into [6], the slot for the return value.
((:MOVE-IDENTITY (:FRAME (:B1St 13)) (:FRIMI (:31SE 6)
((:TERINATE))

Figure 4-3: Hybrid Code for Factorial.

52

1 Initialize frame
Spawn SCs 2 and 11

Return results ([5]
and [6]) to caller.

2 Evaluate predicate 11: If (caller's FD present)
If base case, and (all work done),

copy argument to [6] write true to [5].

Else if recursive case,
initiate recursive call
spawn SQs 5 and 8

5t Multiply argument by 8 If recursive call done,I result of recursive call, [free its context
writing it to [6]

Figure 4-4: There are five scheduling quanta in factoiiaL The numbers in the SQ names have
no significance, except that the first is always named SQ-1. Arrows indicate where SQs may
be forked and can be thought of as a subset of data dependences. SQs 5 and 11 are only
spawned in the recursive case. Observe that on its first execution, SQ-1 will fault midway
through, because the return results will not be ready. Execution will restart in the middle of
the SQ.

53

Base Case Recursive Case

0: FD of return location 0: FD of return location
1: unused 1: unused

2: unused 2: unused

3: argument (n) 3: argument (n)
4: n <- 1 ? 4: n <- 1 ?

5: signal, [0] & [7] full 5: signal, [0] & 7] full
6: result 6: result

7: signal, [4] true 7: signal, [11] full

8: signal, rec call done

9: result of rec. call

10: context of rec. call

11: signal, [101 freed

12: factcodeblock

13: [31+9]
14: n-1

Figure 4-5: Frame Slots Used by Factorial Code. The left frame shows slot usage in the base
case, and the right frame shows slot usage in the recursive case. Signals are flags that are set
to indicate that the described condition has been met; i.e. [51 is explicitly set to true after
values are written to [0] and [7]. Note that the same slot, such as [7], can have a different
meaning for the two mutually exclusive cases.

54

4.1.3 The MDP Code

The MDP code is included in Appendix A.1. It has all of the same characteristics as the hybrid

code, i.e. the same frame slot assignments and SQs (modulo my slightly different calling

convention). The hybrid code had 28 instructions; the MDP code has 180, not counting code

in library routines. Thus there are an average of 6.4 MDP instructions per hybrid instruction.

This blow-up is not as bad as it seems because a MDP instruction word is roughly one-fourth

the size of a hybrid instruction word.' Part of the growth is thus the accepted expansion factor

between CISCy and RISCy architectures. As the reader will recall, there are two reasons that

one hybrid word expands into many instruction words: First, hybrid instructions are more

powerful and suited to the special purpose than the J-Machine; second, an expansion occurs

to fit the code into the more restrictive MDP addressing modes.

4.1.4 Load Balancing

As mentioned in Section 2.3.2, my compiler does no load balancing. The user must modify the

code produced by the get-contezt instruction to spawn procedures to an appropriate processor,

usually a function of the argument(s); otherwise, all calls will go to the same node. Because

factorial is singly recursive, it makes sense to spawn (fact n) onto processor n, because no

task will already be running there. I changed one line of the compiled routine to implement

this. If n were potentially larger than p, the number of processors, we would take its value

modulo p. This would guarantee an even distribution.

4.1.5 Dynamic Counts

When I ran (fact 4) on the MDP simulator, it took 1263 ticks for the result to be written

to the original calling frame. A tick is the time unit used by the simulator: One tick equals

one instruction, even though not all instructions on the J-Machine will take the same time.

The simulator also ignores network latency. Four processors were enabled, and utilization was

37% - i.e. on average, a processor did useful work a little over a third of the time. Fault

'I cannot give an exact length for hybrid words, because the compiler I used was for a paper version of the
architecture where word lengths were essentially unlimited. According to lannucci in private correspondence,
the word size can be roughly thought of as 64 bits.

55

Handler Name Times Called Ticks/Call Total Ticks

Lookup 25 5 or 6 + 6u; 212
CFUT 21 18 378

Move-Remote 16 13 + 7w 264
Continue-Test 14 7 or 20 189
Get-Context 3 24 72

Allocate 3 12 36
Total 136 n/a 1061

Table 4.1: System Calls for (fact 4). Ranges are specified for the ticks/call column because
the time may depend on the data. For lookup and move-remote, w specifies the number of
waiting continuations. An estimated average number is used (with w) to approximate
the total ticks.

Instruction Type Times Used Percent Comments
Move 882 47.8 Both reg-reg and reg-frame
Field 247 13.3 Operations on tags

Network 237 12.8 Sending messages
DC 159 8.6 Loading constants into RO

Branch 125 6.7 Does not include busy-looping
Fault 87 4.7 Entering and leaving system calls
ALU 61 3.3 ALU ops for program and libraries
NOP 46 2.4 NOPs used as padding to align instructions

Table 4.2: Dynamic Instruction Usage for (fact 4).

and library usage is shown in Table 4.1. As the totals show, 84% of the time was spent in

the libraries. The routine that consumed the most time was the cfuture fault handler. It

was called 21 times, and each time took 18 ticks. As described in Section 2.2.4, the cfuture

handler must allocate space to store a continuation and fill in the necessary data. Dynamic

instruction usage (not counting idle cycles) is shown by category in Table 4.2.

The average number of instructions executed per message is 92.6, which is larger than

the 55 instructions per message empirically found by Horwat in [Horwat 1989, page 1041. His

Concurrent Smalitalk version of the same factorial program takes only 315 ticks to complete

[Horwat 1989, page 1101, compared to my 1263.

56

Argument Ticks/Call Ticks/Skewed Calls Ticks/Nonskewed Calls
I1t Result 2' a Result 11t Result 2n d Result

4 1263 1864 2163 1992 2271
8 2691 4204 4590 4332 4611
12 4119 6544 6846 6672 6951

Table 4.3: Throughput for Factorial. This table compares the number of ticks required to
compute one and two calls of factorial. For each case, the number of processors used is the
same as the argument. The first data column shows how long it takes for one call executing
alone to complete. The second set of columns shows how long it takes to complete two factorial
calls made at the same time, skewed among the enabled processors. The last set of columns
shows the completion times when the two calls are not skewed among the processors.

4.1.6 Throughput

One reason for the high latency is that, at every design decision, throughput was favored over

latency. This is due to the decision to break apart any transaction of unbounded latency, which

increased the latency of tasks but improved throughput. Table 4.3 shows that computing two

invocations of factorial concurrently on the J-Machine takes significantly less than twice as

much time as computing a single call. This is true for two reasons:

1. Each task suspends itself when it is waiting for a result from another processor.

2. The factorial calls can be skewed among the processors.

The table isolates these factors by including results for when the procedure calls are skewed

and when they are not. Even when two factorial calls execute on the same processors, in the

same order, throughput is increased over the single call case. This is because subtasks of the

second factorial call can execute when no work can be done on a given processor toward the

first factorial call.

4.1.7 Conclusion

Although I was pleased that the throughput of the system was better than the reciprocal

of the latency, I was disappointed by the high latency, although it was predictable. One of

my purposes in following the factorial program through each step was to show where all the

57

fib n =

if n <= 1 then
n

else

fib (n-i) + fib (n-2);

Figure 4-6: Id Code for Fibonacci

overhead was added. I should have expected the traditional costs of simulating one archi-

tecture on another. Almost half the time was spent on the "cfuture" and "lookup" handlers

which store suspended continuations and revive them, respectively. It would be impossible

to simulate these features with high efficiency. The problem can be summarized succinctly:

Because almost all the synchronization is handled in software, it is impractical to synchronize

on individual frame slots. While the costs incurred to synchronize on arguments and return

values would be reasonable, synchronizing on temporary values is excessively expensive. This

"s exacerbated by the hybrid compiler's lavish creation of frame slots, which make sense on

its architecture but not when synchronization is done in software.

While I was initially optimistic after the 6.4:1 code expansion because of the normal

CISC/RISC trade-offs, we see now that this number is actually irrelevant, as the vast majority

of time is spent in library routines that the hybrid architecture would have in hardware.

Simulating the hybrid architecture was thus not an optimal choice for implementing dataflow

on the J-Machine. A better choice is described in the next chapter.

4.2 Fibonacci

Another program I benchmarked was the doubly-recursive Fibonacci routine shown in Fig-

ure 4-6. The corresponding MDP code is in Appendix A.2. There are 46 lines of hybrid code,

which translate to 271 lines of MDP code, yielding a ratio of 5.9:1. Because its transformation

is so similar to factorial's, I will not go into detail, except to mention that I added a distribu-

tion function to load balance. Empirically, I found the function (((p and n) + (p or n)) and 31),

where p is the current processor number and n the new argument. In runs with more than

one processor, I used this function to map calls to processors.

58

Argument # Processors Number of Ticks

1 1 166
4 1 4353
4 6 2105
6 1 13760
6 13 3473
8 22 5628
10 32 9566
12 32 67641

Table 4.4: Timings for Fibonacci. Note that, until the argument gets very large, the growth in
number of ticks is not exponential when many processors are used. Computing Fib(n) takes

roughly (1,1'5)n procedure calls, which can be distributed among the processors.

The times and statistics for execution with different arguments is shown in Table 4.4. Note

that for low arguments using multiple processors, growth is closer to linear than exponential.

This is illustrated in Figure 4-7.

While the number of ticks was higher than I would have liked for Fibonacci, the change

in its order of growth was just the sort of thing one hopes to see on a parallel computer. I

was only able to simulate 32 processors. The results should be fantastic when a 4096-node

J-Machine comes on-line.

4.3 Loop Parallelization

In the Fibonacci example, the parallelism was due to a function distribution strategy that I

added by hand, thus it cannot really be counted as part of the system. This is in contrast to

loop parallelization, for which it is straightforward for the compiler to provide parallelism: If

there are K iteration areas, each need only be assigned unique processors to send subcalls to;

for example, iteration area i could spawn its subcalls to processors i, i + K, etc. Because K

would be available at run-time (and optionally at compile-time), this could easily be computed.

Because the compiler did not handle loops, as explained in Section 2.3.3, I compiled simple

loop programs by hand and did not have the time or compute-power for a large example. The

"Unfortunately, I was unable to get a Concurrent Smalltalk timing to compare it to.

59

MM_ = ~,,n n um•n ummmnmmn

14000-
Q 0 Single Processor

12000- El Many Processors

10000--

8000--

6000

4000

2000--

0 J
0 2 4 6 8 10

Argument

Figure 4-7: Plot of Ticks for Fibonacci

60

dof loop n a
{ suma 0

in
for i <- I to n do

sum-increment = sum + i;
next sum = sum-increment

finally sum }};

Figure 4-8: Id Code for Loop Example

loop program I used is shown in Figure 4-8. The program returns the sum of the first n

integers.
3

The produced code may be seen in Appendix A.3. There are 48 lines of hybrid code which

were translated to 188 lines of MDP code, for a 3.9:1 ratio. The better instruction ratio is

due to my hand-compiling the code rather than using my non-optimizing compiler. While I

purposely did not generate top-quality code, I still used better register allocation than the

compiler, saving reloads. Another factor was the reliance on additional library routines.

This program is a useful benchmark in that it shows the overhead to set up iteration areas

and to launch iterations of a loop in parallel. The number of ticks, as a function of K, the

number of itera ions to unroll, and n, the argument, is 50 + 5 * K + 135 * n. The three addends

of the formula can be interpreted:

1. The constant term, 50, indicates that the additional cost for a procedure to use loop

parallelization is low. There is thus no inhibition against parallelizing loops.

2. The 5 * K term is a pleasant surprise: Once the base cost for loop parallelization has

been paid, it only costs 5 ticks to add and support each iteration area. This makes it

reasonable to unroll many iterations of a loop.

3. The 135 * n term shows that each dynamic iteration of the loop is costly. However, this

also can be thought of in terms of constant overhead: If each iteration of the loop spawns

a long subroutine, as in the example in Figure 2-13, the only additional code that will

'The body of the loop could have been written more succinctly as next sum = sum + i. I work with this
version because the hacked-up version of fannucci's compiler could not compile new loop program., arld tile
hybrid code for this example was the only available.

61

execute on the loop processor is that to spawn a procedure call. This means that each

iteration of the loop will use fewer than 200 ticks on its home processor, regardless of

how big a computation it performs. As described above, it is trivial to distribute its

procedure calls so that they do not interfere with those of other iterations.

I thus consider the loop parallelization strategy a success, although I am still dissatisfied

with the overhead. A primary reason for the high overhead is the small number of registers

on the MDP. There are only four general-purpose registers and four address registers. Two

of the address registers are special-purpose and cannot be used by my system, and one, A2,

is dedicated to holding the base of frame. This only leaves one address register, Al, to use

as an iteration area pointer, which is inadequate. Because hybrid addressing modes exist to

directly access slots of the previous, current, and next iteration areas, as well as offsets from

the current frame, it would be useful to have spare address registers for each of these pointers.

As things are now, the value in Al keeps getting clobbered as references are made to the other

iteration areas, requiring the addresses to be recomputed frequently. Because of the shortage

of general-purpose registers, I cannot use them to cache frequently-needed values.

4.4 Conclusion

For simple programs like factorial and Fibonacci, the code performed several times worse

than Concurrent Smalltalk code. While this is disappointing, it is to be expected, as one

architecture is being used to simulate another. Loop parallelization provided very promising

results, particularly because the semantics of Id and the state of its compiler are such the

programmer need never be aware of possible parallelization. Any gain in parallelization and

efficiency that occurs without any programmer effort is a big win.

62

Chapter 5

Conclusion

And oftentimes, to win us to our harm,

The instruments of darkness tell us truths,

Win us with honest trifles, to betray 's

In deepest consequence.

William Shakespeare, Macbeth, Act I, Scene iii, line 123.

The current system has several strengths and weaknesses. I consider its primary strengths

to be:

" It successfully simulates the hybrid architecture within an acceptable factor of code

expansion.

" It includes a powerful loop parallelization strategy that shows the feasibility of concur-

rent execution of iterations of a loop.

" The observed throughput of the system implies that it succeeds to some extent at latency

toleration - something more important in real systems and big programs than in toy

benchmarks.

" By taking advantage of the Id language and compiler, it is possible for to write parallel

programs for the J-Machine without explicit mention of parallelism.

The only disappointment is that the costs of going through the hybrid architecturc may

outweigh the benefits. There are three incremental approaches that can be taken in futrre

63

efforts: improving MDP code generation, improving hybrid code generation, and eliminating

weaknesses of the J-Machine. I discuss each of these and then propose taking a different

approach.

5.1 Improving MDP Code

As mentioned in appropriate sections throughout the document, the MDP code I produce is

not optimal. Specifically, register assignment is primitive, and various peephole optimizations

could be performed. In contrast, the libraries (see Appendix B) are tightly hand-coded, as

I wrote them directly in MDP assembly language. Because roughly 80% of execution time

is spent in the libraries, local optimizations of compiled code are unimportant. Even if I

could double the speed of the compiled code produced, the total execution time would only

increase by 10%. Therefore, it is not feasible to drastically improve the code through local

optimization.

5.2 Improving Hybrid Code

Or-problem with my system is that the hybrid code I begin with is non-optimal, particu-

larl) in terms of the J-Machine, where cfuture faults, lookup calls, etc., are costly. I think

op, imizations to the hybrid compiler would go much further than ones in my back-end for the

MDP. For several reasons, however, it seems that modifying the hybrid compiler would be a

pc)r idea:

1. The hybrid compiler does not fit quite properly on top of the current version of the base

Id compiler, and work would be required to bring them into synch.

2. Particularly because the codc was written by someone else, writing new code might be

easier than modifying it. This is meant not to criticize Iannucci's excellent and very

readable coding style but as a general comment on the difficulty of one programmer's

modifying another's code.

3. If extensive modification or a re-write is necessary, there is no reason for the extra costs

added by going through an intermediate architecture.

64

Because the hybrid architecture is too different for the J-Machine to execute its code as

efficiently as code generated specifically for the J-Machine, it makes little sense to put effort

into generating hybrid code that would be better for the J-Machine.

5.3 Strengths and Weaknesses of the J-Machine

Several features of the J-Machine make it excellent for running dataflow code; it was designed

to support fine-grained computation as described in [Dally 1988a]. The features not found on

most computers that proved most beneficial were:

1. Hardware support for cfutures.

2. The low-latency network which gives the freedom to send frequent messages encouraging

the division of tasks.

3. User-defined tag types, which aided debugging.

4. The large number of processors that will be available.

There were some things I did not like about the J-Machine. Suggestions for alleviating two of

the worst problems are:

1. Increase the number of address and general-purpose registers. Four of each, particularly

when some have special purposes, is inadequate, as described in Section 4.3.

2. Hardware support for cfuture suspensions would make frequent synchronization much

more affordable. The 18 ticks for each call of the cfuture fault handler is too expensive.

At a recent Concurrent VLSI Architecture group meeting, I was pleased to find that others felt

the same needs and that such changes might be made for the next version of the J-Machine.

In several instances, however, of imperfect fits between hybrid code and the J-Machine, it

is impossible to blame either architecture. From this observation and the above descriptions

of rejected ideas for incremental changes, I would like to propose a different approach that

does not rely on trying to fit the two architectures together.

65

5.4 Synchronization on Tokens

After reading this document based on Traub and Iannucci's method of partially sequentializing

dataflow programs, it is difficult to step back and imagine a different method that does

not use frames and continuation lists. Such a method exists, based more directly on Greg

Papadopoulos' ezplicit token store (ETS) [Papadopoulos 19881.1 The basic idea, used on

Monsoon, is that each cycle, a token is removed from the queue. Its context value, c, is added

to the destination instruction offset, s, and that location is checked. If the location is empty,

the value, v, is stored there. If the location is not empty, the value stored there must be the

other argument, so the instruction is executed. It is not obvious why this method is better

for the J-Machine, but empirical results suggest it is.

Last year, as a UROP, I designed a method to use the explicit token store on the MDP

[Spertus 1989]. Its only similarity to my new system is that the message words are:

1. Instrution address, s.

2. Context value, c.

3. Data value, v.

Figures 5-1 and 5-2 show code for the -1 and multiply nodes, respectively, from the dataflow

graph in Figure 4-2 provide examples of monadic and dyadic nodes. The cfuture fault handler

is only two lines long and is shown in Figure 5-3. Bill Daily played a major role in developing

these templates. For further details, such as the calling convention, see [Spertus 1989].

The only benchmark for this system is factorial. It took 431 ticks to compute 4!, compared

to the new system's 1263. The comparison is fair even though it is between hand-compiled

and machine-generated code, as transforming dataflow nodes is straightforward. Actually,

the comparison is unfair in the other direction, because so much intelligent effort has been

put into the hybrid system. If I had spent the past year studying how to improve the ETS

code, such as by discovering how to combine a few instructions with known orderings into a

single macro-dataflow node, this technique would surely surpass the performance of the hybrid

system, especially because it is already better.

'While lannucci's method uses an explicit token store also, the schema I am presenting is more trivially
based on Papadopoulos' ideas.

66

; Subtract I node

factinodeS:

move [2,13), RI

sub RI, 1, 1i

DC MSG: (facti.node7_left<<sys-lenbits)+3

send2 3, RO, 0

send2e (1,A3], Ri, 0

suspend

Figure 5-1: A Monadic Node Using ETS. The data value is taken from offset two in the
message, and the constant 1 is subtracted. The result is sent to the left input of node 7 on
processor 3.

; Multiply node
factlnode8:

move [1,k3), RO ; Put data-addr in 12

move RO, A2

move [2,A3), RI ; Get ne argument

; This line may fault

mul Ri, [0, 2], Ri

DC MSG: (facti.node9gright<<sys-len-bits)+3

send2 6, RO, 0
send2e [1,A3], Ri, 0

; Clean up

wtag RO, CFUT, RO
move RO, [O,A2)

suspend

Figure 5-2: A Dyadic Node Using ETS. If the other argument has not arrived yet, a fault

occurs instead of a multiply. The fault handler will write the new argument to the faulted
slot. If the other argument is already there, the multiply precedes, and a token is sent to node

9, after which the slot must be emptied if the frame is to be reused.

67

; cfuture handler
iault.ctutloc:

move Ri, [0,12

suspend

Figure 5-3: The Cfuture Handler for ETS. It simply moves the new argument, guaranteed to
be in R1, into the slot reserved for the argument.

5.5 Conclusion

Even though I do not think the system good enough to justify continuing dataflow research

on the J-Machine by building on it, I consider the experiment with the hybrid architecture to

be a success. In addition to the successful results described in the analysis, there were several

other successful aspects to the project:

" By working with both the Computation Structures Group and the Concurrent VLSI

Architecture group, I was able to help cross-fertilize two groups that have very different

outlooks on the same problem, parallel computation. MIT has been criticized for not

having enough communication between groups.

" By stretching on the J-Machine in ways its designers never imagined, I have found some

of its limits. While this does not mean the J-Machine is flawed or necessarily should

be changed, its architects should keep aware of what trade-offs they have made and

reconsider them.

" In the process of building my compiler, I have built utilities that will convert among

different formats of MDP code. This should aid other J-Machine programmers in future

work.

" There have still been few enough MDP coders that I have significantly increased the

number of hours spent MDP hacking. I have helped contribute to the set of known neat

hacks for the J-Machine (such as with the code in Figure 3-6).

" By proving the feasibility of parallelizing iterations of a loop and presenting ideas on

how "straight-line" Id code could be better converted, I have made a powerful case for

68

the possible efficiency of dataflow program execution on the J-Machine.

In conclusion, I consider the project very worthwhile and am optimistic about the results of

further research on dataflow computation on the J-Machine.

69

Appendix A

MDP Program Examples

A.1 MDP Code for Factorial

nodule FACT

;((:LABEL (:LITERAL (:STNBOL :SQ-1))))
SQ..1:

MOVE (1,A3J. RZ
MOVE 1.3, £2

;((:MOVE (:LITERAL (:CODE-BLOCK :FACT)) (:FRAME (:BASS 12))))
MOVE 12, R1
CALL LOOKUP-VECTOR
DC {FACT-codblock.ref}
MOVE 10, E12,A23

;((:CDITINUS-TIST (:FIAXE (;BASS 3) :SUSPENIVE) (:LITERAL (:SYMBOL :SQ-2))))
DC {SQ-2.ms1 .ref}
MOVE 3, 1
CALL CITI,.VECTOR

;((:COITIWE-TZST (:71kME (:BASE 0) :SUSPENSIVE) (:LITEB.AL (:STWIOL :SQ-ii))))
DC (SQA11.Aug-zef}
NOVI 0, at
CALL CETT..VECTOR

;((:LABEL (:LZTELAL (:STNEOL :SE1D-UXSULT-O))))
3ID-RSULT..O:

NOVI [1,A33, 3
F0?! 1.3, £2

;((-MON-RSNOT1 (FPRAMS (:BASE 0) :SUSPENSIVE)
* (:OLITERAL (:INTEG!1 1)
* (:711!! (:BASE 6) :SUSPEE5VVE)))

SUSPEISIVK4M8:
MOVE El,A33, 13
N0VI 3. A2
DC (SUSPRSI?!463-.ag.r.ef)
RTkG (O.A23, 13

70

&TAG [6,A23, 13
SUWDO EO,12]
DC fLOCALMOVI..usjroS}
SENDO 10
SEUDo Eo.A2J
SENDO 1
SEIDNO [6,A23

;((:MOVE-IZNOTE (:FRAME (:BSS 0)) (:LITERAL (:IRTEGER 0))

(:71AJIZ (:BASE 6) :SUSPEUSIVE)))
SUSPESSIVE4689:

ROVE [l.A33. 13
ROVE 13, A2
DC {SUSPERSIVE4G89.usg.vef)
RTAG [6,A23. 13
SENDO [0,A2J
DC -CLOCAL-jIOVR..ng..ret}
SENDO 10
SENDO [0,A2]
SENDO 0
SENDRO [6,A23

((:TERIVATE))
SUSPEND

SQ-.11:
MOVE [1,03, 33
MOVE 1L3, A2

;((:TEST-2 (:FRAME (:SASE 0) :SUSPENSIVE) (:71113 (:BISE T) :SUSPENSIVE)

(:71.111 (:BASE 6))))
SUSPENSIVE4696:

MlOVE [l131, 3
ROVE 13, £2
DC (SUSPERSIVE469-sg-rot}
ITAG (0,A2]. R3
&TAG [7,12), 10
HOVE 6, 11
CALL LOOKUP-.VECTOR
MOVE true, L3
MOVE 13, C6,123

;(: TMlEXATE))
SUSPEND

;((:LABIL (:LITUA.Lr (SYMBOL :SQ-2))))
SQ-.2:

ROVE [1,A33], 13
HOVE R3, A2

0F((:((:711 (:1 3) :SUSPRISIVE) (:LITERAL (:ITKGER 1))
(:71113 (:BASE 4))))

SUSPENSIVE4702:
MOVE (1,A1, R3
ROVE R3, £2

DC {SUSPESI4702asgrof)
KTAG [3,A2], &3
ROVE 4, 11
CALL LOOKUP-.VECTOR
ROVE [3,A1], 1L3
LE 13, 1, 12
ROVE R.2, [4,A1

71

;((:EUNCE-FALSE (:FRAME OUDSE 4)) (:LITERAL (:SYI(BOL :ELSE-4))))
MOVE (4,12], 3
BT R3, 2
DC {KLSE.4ipet}
MOVE 3.0, IP

;((:HOVE-IDE~RITY (:FWIE (:BASE 3) :SUSPENSIVE) (:71kM (:BASE 6)
SUSPEISIVE4710:

MOVE E1.A33, 13
HOVE 3.3, 12
DC (SUSPENSIVE470ms-ref}

iTIG E3,A2], 3.3
HOVE 6. 3.1

CALL LOOVM_..VCTO3.
HOVE E3,12], 3

HOVE 3.3, (6,A23

;((:MOVE-IDENTITT (:FRAMEZ (:1SS 4)) (:FR.M (:ESE 7)
HOVE 7, 311
CALL LOOlUP.VSCTO.
HOVE [4.A1, R3

HOVE R3, [7,A23

;((:RACR (:LITERAL (:SYMBOL :B10-17-4))))
DC {END1F_.4.ip~ref}

HOVE 10, IP

;((:LAIEL (:LITERAL (:SYNBOL :ELSK-4))))
ELSE.4:

HOVE (1,1, R3
MOVE 33, 12

*(-(:73.1H (:BASS 3) :SUSPEISIVE) (:LITEILLL (:INTEGER 1)
(:F3.1HZ <:BASE 14M)

SUSPENSIVE4718:
HOVE [1,13), &3
MOVE 13, 12
DC {SUSPEISIVE478..mg.r~f}
1T10 (3,123, 33
HOVE 14, RI1
CALL LOOKUP-VECTOR.
HOVE (3.12],3.&3
SUB E.l, 1, 3.2
HOVb 3.2, [14,123

;((CONTINUE (:LZTZ3.AL (:SYMBOL *:SQ4874))))
HOVE SIR, &3
SENDO 13

DC {SQ4674.zg-refl
SE100 SO0

531010 A2

;((:GET-CONTEXT (:FRA1ME (:BASS 12)) (:73.1HZ (:BkSE 10))))
HOVE 12, L3
'JTIG 3.3, IT, 13
LSE 3. 6, 32
MOVE SIR. R.2

ADD U3, R2, R3

VTAG 13, FD, 33
sondO [14,12] ; anrument

DC -LOCIL..OLTC-sg.ref}

SHOO SO

SEIDO (12,A2)

72

SENDO 1.3
3311190 10

;((:SPECIAL-TEST-1 (:11MB (:BASE 10)

SUJSPENSIVE4729:
MOVE (1,13], R3

MOVE 1.3, A2

DC {SUSPESIVE4729..ugret}
RTAG E10,12], 13

;((:IDE-CU UZT-COlTXIT (:LITERAL (:BASE 8)) (:REGISTER 0))
MOVE A2, 13
UTAB 13, IT, R.3
MOVE 10, R2
DC 8192

ADD 1.3, 30, R3
LSE 13, S, R.3

NOTE 111, 11
ADD 13, 11, R3
UTAG 13, FD, R3

HOVE R3, (0,10]

;((:MOVE-3EHOTE (:B (:BASE 10)) (:LITERAL (:INTEGER 0))

;(:REGISTER OM)

SENDO [10,A1
DC (LOCAMOVR..msg.ref)
SENDO 30
SENDO [10,A2]
SENDO 0
SENDEO, [0,10]

i((:HOVE-REMOTE (:FRAME1 (:BASE 10)) (:LITERIL (:ITEGER 3))
(:FRAME (zEISS 14)

SENDO [10,A2]
DC (LOCLHOVRmszgrof
SENDO R0
SENDO [10.A23

SENDO 3
SEKOBO [14,A23

((:TERIIATE))
SUSPEND

;((LADEL (:LITERAL (:SYMBOL *:SQ4874))))
SQ4674:

HOVE [1,A1, R3

HOVE 13, A2

;((:COITIUB-TEST (:FRAME (:BASE 3) :SUSPENSIVE) (:LITERLL (:SYM(BOL :SQ-5))))

DC {SQ6-asg-rot}
MOVE 3, 11
CALL CIT.VECTOR

;((:CONTINUE-TEST (:FRMEf (:BASES8) :SUSPENSIVE) (:LITEIL (:SYMBOL %SQ-8))))
DC {SQ_.8..sg..ref}
HOVE 8, 11

CALL CNTT..VECTOR

;((:LAEL (:LITERAL (;SYMBOL :E10-IF-4))))

ENDIF-4:
HOVE [1,13], R3

MOVE L., 12

;((:TERtMIVATE))

73

SUSPEND

;((LAREL (:LZRAL (:SYMBOL :SQ-8))))
SQ.8:

NOVI 1:1.A33. 13
ROVE 13, A2

;((:TRST-1 (:FRAME (:BASE 8) :SUSPENSIVE) (:REGISTER 0))

SUSPEISIVE4741:
MOVE [1,13), R3
NOVI R3. A2
DC {SUSPESIE474I-amag.r~f}

hTAG E8.12). 13
NOVI true, L3
NOVI 13, [0,101

;((:URTURJ-COETKZT (:FRAME1 (:BASE 10) :SUSPENSIVE) (:F1AME (:BASE 11)
SUSPERSIVE4746:

ROVE [1.13), L3
ROVE 10, £2
DC {SUSPENSIV4746.sngref}
1710 [10,12), 13
ROVE 11, 11

CALL LOOKUPV!CTOR
ROVE true, 13
ROVE L3, [11,A23

;M(NOYE-ZDENTfll (:?RAJI! (:B155 11)) (:73.ME (-BASE 7)
ROVE 7, 11
CALL LOOK JP-VZCTOR

ROVIE [1,12), 1L3
ROVE 13, [7,12]

((:713)11117K))

SUSPEND

;((:LABEL (:LIELL (:SYMBOL :SQ-6))))

ROVE [1,A3), R3
ROVE L.3. A2

;((zo (:71111 (:BASS 3) :SUSPENSIVE) (:FRI11 (:11S 9) :SUSPENSIVE)
(:71111 (:BASE 13)

SUSPEISIVE4V 13:
ROVE [1,13]. 13
ROVE 10, A2
DC {SUSPESIV473usg.r.af}

&TAG [3,A1, R3

3.710 [9,12), 13
ROVE 13, 11
CALL LOOKUP-.VECTOR

ROVE [3,12), 13
RUL L3. [9,12), 11
ROVE Ri, [13,A2)

;((:OVE-IDENTITY (:F2&11 (:BASS 13)) (:FRAME1 (:81St 6)
ROVE 6, 11
CALL LOOIUP-3!CTOR
ROVE [13.A1, 3
ROVE 13, [6,A1)

;((:TEINI7EAT))
SUSPEND

end

74

ref SUSPnSIYK4763_us5..rof v KSG: (((SUSPEUSIVE47E3+FACT-loc)<<1O))+2
rof SUSPUSIVE4746sg.r~f - NSG: (((SUSPUISIVE4V48+FACT-loc)<<1O))+2

rot SUSPZnSIVR474.*sg..ref - 110: (((SUSPENSIVE4741+FACT-lec)<<1O))+2
ref SQ..S..sg..rof - 1150:(((sQ-8+FACt-loc)<<1O))+2

rot SQ..S~wg.rof a XSG:(((SQS+FICT-loc)<<1O))+2

ref BSPRSIV4729.s;..ref - KSG: (((SUSPENSIVE4729+FLCT..oc)<<1O))+2

rof SQ4674_=g.rof - KSG: (((SQ4674+FlC.1c)<<1O))+2
rot SUSPEISIVR471&.sg-rf - KSG: ((CSUSPEISIVE4718+FACTloc)«<1O))+2
ref SIJSPRIVI41O-msgrof a NSG; (((SUSPEiSIVE471O+FACT-loc) (<10))+2

rot SUSPUSIVR472_asg.rof - KSG: (((SUSPENSIVE4702+FACT-loc)<<i0))+2

ref SUSPERIVE4695-mag. ref a NSG: (((SUSPUZSIVZ49+FACT-lo),<1O))+2
ref SUSPSSIT469..nsg-.ref - 150: (((SUSPUISIVE4889+FACT..oc)<10)).;2
rot SUSPMSZV483.usg..rof - 110: (((SUSPUISIVE4O3+FACT-loc)<<10))+2
ref SQ..11.sgrof * 1S:(((SQ-11+FACT-loe)<<10))+2

ref SQ..2..asg..ef u jSG:((CSQ-2+FACTIac)<1O))+2
ref ENDI-4.ip..rof w IP: (((ZND.IF-4+fCT-lQc)<10))+ASOLUTZ
ref ELSL.4-ip..rot - rP: (((flLB4+FCTloc)10))ABSOLUTZ
ref FAC?..cedeblock..rof - CB: (FACT-loc(<<6)+16

75

A.2 MDP Code for Fibonacci

nodule FIB

;((OLABL (:LITHIAL (:SYMBOL :SQ-1))))
SQ.,1:

ROVIE 1.3], 3
ROVE 13, A2

;((:ROVU (:LITEI.AL (:CODI-BLOCI :FIB)) (:FRAME3 (:BASS 18)
Nova 1s. 1
CAT L LOOIUP.VECTOR
DC {FZB....deblock..zot}
NOVI 10, [18,A23

;((COITIEUE-TEST (:71115 (:1SI 3) :SUSPENSIVE) (:LITERAL (:SYMBOL -SQ-2))))
DC {SQ_2_us..r~f
ROVI 3, R1
CALL CNTT..VICTOI

;((:CDITINrUE-TEST (:FRAME (:BASE 0) :SUSPENSIVE) (:LITERA&L (:SYNBOL zSQ-17))))
DC {SQ_.17_.ug~zet}
MOVE 0. RI
CALL CITT..VECTOR

;((:LAREL (:LITERAL (:SYMBOL :SRND-RESUL-0))))
SENDUSULT..0:

MOVE (1,A33. 3
NOVI 13, A2

;((:ROVE-REROTS (:711)1 (:31St 0) :SUSPENSIVE)
(:LITERAL (:INTEGER 1)
(:711)1 (:3153 8) :SUSPEUSIVE)))

SUSPZNSIVE2603:
ROVE [1,A33. 3
ROVS 13, A2
DC {SUSPEJSIVE2S3.agret)
&TAG (0,A2], 33
&TAG (6.12], 33
UENDO (0,12]
DC (CLOC1L..RUVLRuug..rof
SENDO 10
SENDO (0,12]
UN1DO 1

SUDZO (6.A1]

;((:NOVI-3150T3 (:73.115 (:BASE 0)) (:LITERAL (:IJTEGER 0)) (:7111 (:BSE 6) :SUSPENSIVE)))
SUSPZNSIVE2 509:

ROVE (1,A3],3.3
ROVE 13, 12
DC {SUSPESIVE2S9asgrof)
lIG [6,A1,] 1L3
UNIDO (0,12]

DC CLOCALROVR_=g5refj
SENDO 10
SEIDO (0,12]
SENDO 0
531010 [65.1

((:TEINZUr))

76

SUSPEND

;((:LIBEL (:LITEI.L (:SYMBOL :SQ-17))))
SQ..17:

MOVE EiA3J, R3
MOVE 13. £2

;(fT:TZST-2 t:?UA9 (:BSE *) -SUSPENSIVE) (iFRAIIE (:SASE 7) :SUSPENSIVE) (:FRAME (:BASE 6)

SUSPEISIVE2616:
MOVE E1,A33), 13
NOVE 13, A2
DC {SUSPESIVE261-aag-ro2t}
ITAG EO,A2), 13
ETAG E7.A2J. 13
MOVE S. al
CALL LOOIUP-.VECTOR
NOVI true, 13
NOVE 13, E6.A2J

((:TERIMNATE))
SUSPEND

;((LAEL (:LITERAL (:SYMBOL :SQ-2))))
SQ-.2:

MOVE El.A3J, R3
MOVE 13. A2

;((:FlAJI (:BASE 3) :SUSPENSIVE) (:LITERAL (:IJTEGER 1) (:FlAXE (:BASE 4)

SUSPENSIVE2622:
NOVI (1,A3], 13
NOVI R3. A2
DC {SUSPENSIE222sgrot
RTAG E3,121. 1.3
NOVI 4, al

CALL LOOEUP..VECTOR
MOVE E3,A2J. R3
LE 13, 1, R2
MOVE R2. E4.123

;M(:31£CN-FALSE (:FRAME (:BASS 4)) (:LITERtAL (:SYMBOL :ELSE-4))))
NOVI [4,A2J, 13
IT 13, 2
DC {ELSE4-ip-ref}
MOVE NO, IP

(OHOVE-IDENTITY (:FRAME (:BASE 3) :SUSPENSIVE) (:7kM (:BASE 6)

SUSPUNSIVE2 530:
MOVE E1,A33, L3
HOVE 13. £2
DC {SUSPESIV23O..ngref)
STAG (3,A1] L3
MOVE 6. ii
CALL LOOKUP-.VECTOR
HOVIE 3,A2] . 13
NOVE &3. E6,A1

;((:NOVE-IDEITITY (:711111 (:BASE 4)) (:FRAME (:BASE 7))))

MOVE 7, 11
CALL LOOKUP-VICTOI
NOVE [4,A1, 13
MOVE 13, [7.A2]

;((:BAI (:LITERAL (:SYJIEOL :KID-IF-4))))

77

DC {ENM.I7.4-i.p.rot}
MOVE 10. IP

;((:LABEL (:LITUL (:SYHEOL :ELSE-4))))
ELSEA:

MOVE E1,A33, 13
MOVE R3, £2

;(:-(FRAJI (:BASE 3) :SUSPZISIVE) (:LITERA£L (:ITZGER 1)) (:7311 (:BASE 20))))
SIJSIZZSIVE2 538:.

MOVE E1,133, U.

MOVE R3, £2
DC {SUSPUSIV238.nsg.ref)
&TAG (3,123. 3
NOTE 20, 11
CAML LOOKUP..VECTOI
MOVE E3,12). 3
SUB AS, 1, R.2
NOVE 1. E20,123

O(: T(7IAMI (ZBA33 3) :SUSPENSIVE) (:LITRR.L (:INTZER 2)) (:711MB (:3133 19))))
SUSPENSXVE2654:

NOVIEl 313. 1.3
NOVE 13, A2
DC {SUSPERIVE244mag.ref}
RTAG E3,12). R3
MOVE 19, 11
CALL LOO&UP-.VECTOR
MOVE (3,12]. 3.
SUB 13. 2, R2
HOVE 12, [19.A1

;((:COITIIUE (:LITER.AL (:SYMBOL *:SQ2490))))
HOVE 11R, 3
51100 R3

DC {3Q2490.ag-rat
33100 10
S11030 £2

;((:GT-CONTEXT (:FRE (:BASE1 18)) (:F3.1MBA13 12))))
MOVE A2. R3
WT£G 13, INT, 13
L3N 13, 6, R3
MOVE FIR., R2
£D0 R3, 12, 13
1110 13, 7D, R3
; ake up destiauation

move (1g.A23,Rl
or R1, R2, 10
ad 3.1, R.2, 1.2
add 10, 12. It1
movo 31. 3.0
ad 11, 30, RI1
seadO RI

sendO I
DC (LOCIL-GEC.mS-.rof)
SEIDO 10
SEIDO E18,12]
S1300 &3
311010 12

;((:SPECIIL-TEST-1 (:7.mB (:BASS 12))))
SUSPISSIVE2S5S.

NoviEl(1,3), R3

78

ROVE 13. A2
DC <SUSPUZSIT 2565..asg.ret)
&TAG (12.A23, 13

;((:INFDNZ-CURitM-cGKTNIT (:LITERAL (:EASN 10)) (:RGISTER. 0))

NOVI A2, R3
VYAG 1L3, INT, 33
MOVE 3.0, R.2
DC 10240
ADD 33. 30 3
LSE R3, 6. LI
NOVE In. 11
ADD 3.3, 11, 33
WTlO R3, PD. 3

RovE 33. Eo.AO3

;((:NOVN-3UOT (:FRAJI (:BASE 12)) (:LITERAhL (:INTEQNI 0)) (:UGISTER 0))

SaDm E12,12]
Dc (LOCAL..Rov1t-g..ret
3NDO 10
SUNDO [12,A23
SENDO 0
SENDRO E,0,1

;((:MOVE-NENOTE (:73.11 O:ISE 12)) (:LITEL&L (:INTECE 3)) (:FRAME (:BASE 19)

SENDO [12,A1
DC {CLOCAL..ROV1.sg-rof}
UNIDO 10
UNRDO (12,A2)
UNIDO 3
SUDEO [19.A23

0 (TERMNATE))
SUSPEND

;((:LABEL (:LITERAL (:SYMBOL *:SQ2490))))
SQ 2490:

NOVIE .1,3, 33
MOVE R.3, A2

;((:COETIMU-TEST (:FRJAE (:RISE 10) :SUSPENSIVE) (:LITEN.AL (:SYI11OL :SQ-B))))

DC {SQ-8-nag-rot}
BoVs 10, 1l
CALL CITT-VECTR0

;((:COITINUE (:LITERAL (:SYMBOL S:SQ2494))))
ROVE INR, 33
UNIDO 3
DC {SQ2494..ugref
SID0 10
531DO 1'4

;((:GNT-CONTIZT (:FAJIE (BASS 18)) (:FRAME (:BASN 16)

NOI A2, IL3
VTAG R3, INT, L3
LSE 13, 6, 3
ROVE 133., 12
ADD K.3, 12, 3
11kG R3, PD. ILI
; ake up destination

move (2041,11

or 1Z, 12, 10
and 11, 12, 12
add 10, 12, 11

79

aevo 31. 10
aad 11, 10. RI
sondO 31

SUIDO 1
DC cLOCALGETCmagref}
SEEDO 10
ShEDO [18,A23
SEIDO 13
SENDRO, 15

;((:SPECLAL-TEST-1 (:FRAME (:BASS 15)
SUSPUSIVE2570:

NOVIE (1.3]. R3
NOVI IS, A2
DC {SUSPENSIV2257O...asg.ret}
ITAG E16,A2), R3

;CC:IDEI-CURE-COITEIT (:LZIAL (:BASZ 13)) (:UEGISTE1 0))
NOVE A2, IS3
WTAG 13, INT, R3
NOTE 10, It
DC 13312
ADD 13. 10, LI
LSI 13, 6. R3
NOVE III, 10
ADD R3, 10, L3
VTAG R3, FD. 13
ROVI 13, E0,AOJ

;((:N(OTE-IROKTE (:73.11 (:BASE 16)) (:LITERAL (:INTEGER 0)) (:IEGISTER 0))
SEEDO [16,A21
DC EL0CAL..ROVl~mg.xef}

SENDO 10
SERDO [16,A21
SIMo 0
SENDEO 10,A03

;((:NOVE-ROTE (:71115 (:BASE 15)) (:LITERAL (.INTEGER 3)) (-FRAME (:BASE 20)
UDO 116,A23

DC -CLOCAL..OVugr~t}
SENDO 10
SUDO (15.12]
SENDO 3
SEnDZC [20,A23

;((:TERMZNATE))
SUSPEND

;((:LABEL (:LITKLAL (:SYMBOL S:SQ2494))))
SQ2494:

NOVIE (1,13), 13
NOVI 13, £2

;M(CONTINUE-TEST (:flAMl (:BASE 14) :SUSPENSIVE) (:LITERAL (:SYMBSOL :SQ-12))))

DC {SQ..12.ag.re)
NOVI 14, at
CALL CITT..VECTOI

;((:CONTINUE-TEST (:FRAME (:BASS 13) :SUSPENSIVE) (:LITERAL (:SYMBOL :SQ-13))))

DC (SQ-13.asg..ref}
ROVE 13, 11
CALL ClTT..VECTOR

;(C:COUTINUE-TEST (:FRAM1E (:BASES8) :SUSPENSIVE) (:LITERLL (:SYMBOL :SQ-14))))

80

DC {SQ_14_smagsref}
MOVE 8. 1
CALL ClrTVCTO1

;((:LkBEL (:LITERAL (:SYIBOL :BBD-IF-4))))

ZIDIF.4:
ROVE [1,133, 3.3

ROV 13. A2

((:TERIXATM))
SUSPEND

;((:LAEL (:LITBUAL (:SYMBOL :SQ-14))))

SQ-14:

ROVE E1,A3J, 3
ROVE 13, A2

;((:TZST-2 (:FB1M1 (:BAS 8) :SUSPENSIVE) (:7111(1 (:BAS 9) :SUSPENSIVE) (:FBAI1 (:BASE 16))))

SUSPKNSVr2682:

ROVi 1.A3], R 3
NOVI 13, A2

DC {SUSPENSIVE2682asgref.}
&TAG [8,A21, 3

1TAG 9,A2], 3
MOVE 16. l

CALL LOOKUPVECTOR
MOVE true, 13
MOVE 33, [16.12]

;((:ROVE-IDEITITT (:FBIU1 (:BASS 16)) (:FRAME (:BASE 7))))

NOVI 7. 31

CALL LOOKUP-VECTOR
ROVE [16,A23, 3

NOVI R3, [7,A21

((:T TINATE))

SUSPEND

;((:LABEL (:LITERIL (:SYMBOL :SQ-13))))

SQ_13:

ROVE [1,A3], 3
ROVE R3, A2

;((:TEST-1 (:F1LN (:BASS 13) :SUSPENSIVE) (:REGISTER 0)))

SUSPEBSIVE290:

NOVE (1,A3], 13
ROVE 33, 12

DC {SUSPEBSIVE2690.msagre t}
&TAG [13,A2], 3

ROVE true, 13
ROVE 13, [0,10"

;((:1rUI.-CONTBZT (:F111 (:BASs 16) :SUSPENSIVE) (:F.AJ(1 (:BISt 8))))

SUSPZISZVB2696:
ROVE (1,13]. 13

ROVI 33, 12

DC {SUSPENSIVE2696mng.ref}
1TA [15,12)3. R3

MOVE 8, 1

CALL LOOKUPVECTOR
ROVE tru.. 3
MOVE R3, [8,A21

;((:TIMZBATE))

81

SUSPEND

;((:LAB& (:LITEI.AL (:SYMBOL :SQ-12))))

UOTZ [1.1.3. 13
MOVE 13. £2

;(*(:FRANEZ (:BASS 14) :SUSPENSIVE) (:FRAJE (:l1SE 11) :SUSPENSIVE) (:1FRA.ME (:B1.SE 17)
BUSPZINSIZ2601:

NOVIE%(.1.3]. R3
NOVI 13, £2
DC {SU3PESITE2601-ang.ret)
ITAG [14.A.23, 13

NOVI I?, 11
CALLir LOOlUP..TECT01
NOTE [14,A.23, 13
AOD 13. (11.1.23. 10
NOVI 10. (17.A23

;((:NOTE-IDEITITT (:FRAME3 (:BASS1 17)) (:711211 (:ASE 6)
NOTE 6, 11
CALL LOOIUP..TRCTOR
NOVE [17,A.23, R3
NOVE R3. (6.1

;TERMINA.TE))
SUSPEND

;((:LABEL (:LITERAL (:SYMBOL :SQ-8))))
SQ.6:

MOVE E1.A33, R3
MOVE R3, A.2

;((:TNST-1 (:FRAJI (:BASE 10) :SUSPENSIVE) (:IIEGISTfl 0))
SUSPENSIVE2610:

NOTE (1,1.33, 13
NOVI 13, £2
DC {SUSPENSIVE261O..sg.ref)

NOTE true, R3
NOTE X3, (0.1.0]

;((:ZTUR-CONTEZT (:71.11 (:EASE 12) :SUSPENSIVE) (:71.1 (:BASE 9)
SUSPUNSIZT2616:

NOTIE (1.13], 1.3
MOVE 13. £2
DC {SUSPENSIV226I5..usg-rot}
&TAG0 E12,A2J. 13
NOTE 9. 1
CALL LOOKUP-V.ECTOR
NOTE true, L3
NOTE L3. (9,A23

((:TENINATE))
SUSPEND

rot SUSPRNSIE2616_a.sg..rof - NSG: (((SUSPENSIVE2616+FI-loc)K<1O))+2
rot SUSPENSITE261...sg-ret w NSG: (((SUSPEESIVE281O+FIBjloc)<1O))+2
ret SUSPENSZTE261.,sgrei a NSG: (((SUSPEUSIVE26oi+FX3..loc)-<1O))+2
rot suspEnsITE29.asg..rof a NSG: (((SUSPUESIVE2S9S+PID..loc)<<10)).2
rot SUSPINSITE2SOO.Asg-ref a ff0: (((SUSPEISIVE269o+FrB-ioc)<<1O))+2
rot SUSPENIIE2582a.A5ret - NSG: (((SUSPUNSIVE2S82+7IB-lac)<<1O))+2
ref SQ_14_as 5 .. rot a MSG:(((SQ-.14+FIB-lac)<<10))+2

82

rot SQ-13-ag-ro a ESQ:(((SQ.13+FlU.1oc)W1O))*2
rot Sq-12..us-rot -)SG:(((Sq-12+FZE-lc)(<O))42
rot SUSPUSIVE2670.sag.rot m USG: (((SUSPUNSIVZ267O+FZB-loc)<<1O))+2
rot SQ2494..xsg..ro - NSG: C((SQ2494+FZB-loc)<<1O))+2

rot Sq-.6.ug-ret w KSG:(((SQ..+FI-loc)<<1O))+2
rot SUSPEISZYZ266S..sg-.ret - NSG: (((SUSPEUSIVE2SE+FB-l.oc)<<10))+2
rot SQ2490_"ugrof a NSG: (((SQ249O+FIBloc)<<1O))+2
rot SUSPKISIV244..sg-rel m MSG: (((SUSPEISIVE2544+FIB-loc)<<1O))+2

rot SUSPEISIYK2638_mg-.rof - KSG: (((SUSPEISIVE2538+FIB.1ac)<<1O))+2
rot SUSPISIV230usgrot - NSG: (((SUSPENSIVE2S30+FIBJloc)<<1O))+2

rot BUSPEUSIV222-sg-.rof - ISG: (((SUSPENSIVE2S22+FXB-loc)<<1O))+2

rot SUSPEISZV216-asg..rot - ISO: (((SUSPUZSIV215+!S...oc)<<1O))+2
rot suspnsIl I25O9..psgre~t - ISO: (((SUSPURSIVE26OB4FR..1 ""1'o))+2-

rot SUSPESIVI2SO3..uag-.ref XO: (((SUSPKISIV9BF',3+FIB.io'i :,s1O))+2
rot Sq-17-ang-rof - NS4:(((SQ..17+FIB-loc)<<1O))+2
ret Sq2mg-ref - ISG:(((SQ..2*1IB-lo)<<1O))+2
rot RND.IF4-ip-rof a IP: (((EjI I4+FZB-loc)<10)) +ABSOLUTE
rot RLSL-4.Aprof - IP:(((ELS3A+FI..loa)<<1O))+ABSOLUTI
rot FIB-codeblock-rot = CB: (FZS...lc<<16)+21

83

A.3 MDP Code for Loop Example

;This in a rewrite of the loop program with non-lannucci structures.
;Instead of having:

; --------------------

--- ----------

;use a setup where different iterations iteration pointers are
-contiguous:

Inormal :frameI

-------------I
Iptr to it. i-il (Think of as "-1")
Iptr to it. 0 1
Iptr to it. I I
I ... I
Iptr to it. K-1l
Iptr to it. 0 I (Think of as KI

I ------------- I
I subfromo 0I

£II
I -------------I
I subfrsm*
II
I ------------
I .I

I -------------I
I subfrsme, 1-1I

The message format will be:
RSG:location of code
ADDI:fros base
ADDI:location of iteration pointer

A2 will be loaded with the frame bas.
Al will be loaded with the base of the subtrame,

Times fincludiag proc call overhead)

arg k time

0 2 326
1 2 460
t0 2 1676
A 2 326,135eA

0 3 330

10 5 1690

A I 326+i3SeA+6e1

label LIEL&1T..PLACI*180

label frame-size - 9
label frome..n-iteration..slots a 6
label argument - 10
label k - 6

84

label total. frame-sise a fraze-size + k * (fraae..n-iteration..lots + 1) + 2
label slotID - total..fram...uixe - I
label aloti - 2

include "lib3 .mdp"

;Program code

label CDLPL&Cgz$400

module progran-code

M (LABKL (:LITER.IL (:SYMBOL :SQ-1)))
sq1:

moe l [A3 10R
move 10, 12

Altered order is a temporary kluadge

(:CUTT (:71111 (:1151 3)
I :SUSPENSIVE)

* (:LITERAL (:SYIIEOL :SIQ-4)))
DC {uq..4..sg..ref}
move 3, 1
call CITT

* (CNTT (:71111 (:3151 0)
* :SUSPENSIVE)

* (:LITERAL (:SYMBOL :SQ-3)))
DC (sq..3..sg-ret}
move 0, 1
call CATT

* move ip, 10
move 10, 1:0,1

* (LABEL (:LITERA1L (:SYIBOL :SERD-RESULT-0)))
send..rosultO0:

move 11,133, 10
move NO, 12

* (:10V1. (:7111 (:31SS 0)
* :SUSPENSIVE)

(:LITERAL (:INTEGER 1M
* (:FRANK (:BASE 7)

*: SUSPENSIVE))
DC jlocal..uovr~msg..ref}
move :7,A23, 11

and2 10,A1, 10, 0

,end [0,A2J, 0
aed2e 1, RI, 0

samve ip, rO
move rO, 1:,A3)

move [1,A3], 10,
molve 10. A2

* (:OVR (:711111 (:3153 0))
* (:LITERAL (:INTEGER 0))
* (:711111 (:31SE 5)

* :SOSPBNSIYI))
DC {localmvrmmagrefl
mkove 15,12], &I

85

sead2 E0,A2J. 10, 0
aend EO,A2J, 0

sond2s 0. 11, 0

* (TRITATI)
suspend

* (:LABKL (:LZIAL (:SYII3OL :SQ-4)))

sq-4:
movo [1,03, 10
mlove 10, A2

(:3013 (:flkKZ (:BASZ 3)
:SUSPUNSZ1I)

*~ (:7U11 (:IASZ 4)))
move 4, RI
canl LOOKUP
move (3.123. 11
move 11, (4,A1

(:SUB (:71.1113 C:ASE 2))
(:LXTflAL (:UTZEK 2))
(:REGISTER 0))

(:3013 (LITKIAL (:rNTEGER 9))
(-REGISTER 1))

(:SUB (:REGISTER 1)
(:LITUMAhL (:IIrKGER 6))
(:REGISTER 2))

(:ADD (:RZGISTUR 1)
(:LITflAL (:IITKGER 6))
(:&zGrSTER 3))

(:STPR (:UGISTER 2))

(:STCR (:UGISTER, W)

(:STSZ C:REGrSTRI 3))

Put base of ID memory into Al
DC hET:frinie.sime((a75.1efl-bits
move A2, 12
stag 12, INT, 12
add R2. 10, 12
Ttag 12, ADDI, R2
move 12, Al

;put k into It
move Eslotl,A2J, 11
sub &1, 1. 1i

;Put base offset into 12
nove 24lfrae-esiz*. 12
add 12, E2,12), 12

In this setup, 0 through k-2 get IN
-1. k-1, k do not.

Loop through
DC IXT:makIN
or R2, 10, 12
mao 1,1

86

loop..setup..loop:
move 32. C13,A1
it 3 11. 10
a"4 12, frame..n.iteration...lots, 12
a"4 33, 1, 3
bt 30, 'loop..setup..loop

;Store k-1 *lot, etc.
DC ZNY:*(skl(I zaakPC)
ad 32, N0, R2

move 32. D(33I ; k-I @lot
move 1.2. C0,AIJ

move EI.A11. 32
ad 1.2,10,312

a"4 R3, 1, 3
nw. 12, ER3.*iJ

C:LABEL (:LITEAL (:SYMBOL :SBTUP-LOOP-6)))
astup.loop..S:

(:BlZ C:UGISTERO)
(:LITflAL- (:SYNBOL :END-SETUP-LOOP-6)))

(:ZXZD C:LTERAL (:XNTznG 6))
(:FRANZ (:UBXT-1T13.ATIO1 0))

(:311 OR:IZGSTER 0)
(:LITUmAL (:IITEGER D)
(:3ZGISTER 0))

(:BR (:LITfLL (:STMBOL :SErUP-LOOP-6)))

(:LABEL (:LITERAL (:SYIIBOL :SID-SETUP-LOOP-6)))
*n&..aetup-.loop-..:

(:5TTh (:REGSTER 2))

(:IXID (:LITERAL (:INTEGER 6)
(:RSOISTNR Q)

(:IXID (:LITU*AL (:1INTRER 0))
(:lRAJS (:ZTEATION 0))

(:5TIN (:FLUIE (:ITflATIOZ 0))
(:LZTSIAL (:IOOLEI :FALSE))
(:flAJI (:TELLTION 0))

* In new scheme, this means as% -i's to sera. Done above.

(:IXD (:LITZRAL (:ITEGZI 6))
(:UGISTfl 4))

(:UXID (:LITERAL (:IRTEGER 0))
(:F11MZ (:ITERATION 0))

(:STYX (:3101511 1)

* (:STPC (:FRANZ (IEXT-ITEIATION 0))
* (:LITURAL (:SYMBOL :1121311-6))

(:FRAMS (:NET-TURTION 0))
DC INT:zaskPC

87

nove 1, at
canl cuZcxzm

* (:TINIATE)
suspend

* (:LABEL (:LITERAL (:SYMBOL :.ITERATE-6)))
iterate.5:

mov. E1,03, 11
move 11. A2
stag R1, ITT, It

move (2,13]. R2
add 32. frameusesol, 12
no0v. (12,123 . L2 ; Offset to base of our loop subfrume now in R2
Ish 32. sysalleubitc, 12
add 11, 12, It
stag 11, ADDI, 11
nov. 11, A1 Base of our loop subfrm in Al.

* (:NOV% (:711113 :ITIATIOI 1)
*:101STICIY :SUSPENSIVE)

* (:FRAME3 (:ITERATION 5)
offet 5 is internal to loop and used not be checked

(kv 1.11), 10
nave 10, (5,1]

DC CFIJT: $0
nave 10, E(11

OL (:.1(FIAIII C:ITERATION W)
* (:FUIIZ (:31SS 4))
* (:711111 (ITfl.ITION 4)))

nove (5,113. 10
1. a0, (4.A23. 30
nov. 10, [4,113

(:31? (:FRAME1 (:ITfITION 4))
* (:OLITRLAL (:SYXBOL :K10-LOOP-W))

move (4.11]. 10
bf 10. -en&.loop.5

* (STPC (:73111 OU3gT-ITKRITION 0))
* (:LITERAL (:SYMBOL :ITERATE-0)
* (:1131N (:I1I-ITKUATION 0))

DC IIT:naskPC
move 1, 1
call CUECK...ZE

* (:DD (:71131 (:1TR11TI1 5)
* (:LITERAL (:ITKGDL M)
* (:711111 (:EgT-ZUATION 1))

nov. (2.133, R1
add 11. frsu*_siz*e+X,1 It1 next
nove C11,12], 1
add R1, 1, It offset I
DC Z1:-(nnskll I naskPC)
ad 11, 10, It

call LOOKUP

nave (5.11]. 10
add 10, 1. 10 integer I
Bav* 30. (11123

88

(:ADD (:7lhU (iITZRATION 2)
:1OISTICIY :SUSPENSIVE)

r:1u (:ITERATION Q)
(:711113Z (:NKZT-ITUATIOI 2))

ring (2.11, 10

add R1, 2-1, 1
call LOOKUP

(oe 2.11. NO
add 30, E5,11). 10
move 30, (11.A1]
DC CFUT:*0

MO* 10, E2,11)

move Ep,A3 R0

move (1.3] A2

wing R1, TIT, 1

SOT* (2.A3], 12
add 12. frame-sixe+1, 12
nove (R212, 12 ; Offset to bass of cur loop subtrmme now in R2
Ink 12, *ym.lenbits, 12
add R1, 12. 1
viag 11, 1101, 1
move R1, &I B fan* of cur loop subtrme in Al

(:TST1 (:F1111 (:ITR1TIO 3)
:NONSTICKY :SUSPENSIVE)

(:7AM1 (zIZZT-ITERATION 3))

rtag (3,11) 10
DC CFUT:*0
move 10, (3.1]

SOTe [2,133. 1
add R1, trme.sit.+1+1. R 1 ; next
move E11,12], R1
add 1. 3, RI offset 3
DC I3T:'(msaskIM I umkPC)
and 11. 10, 11
call LOOKUP

SOT* true, 10
move NO, (31,A2]

(:STIN (:71111 (:PUEVIOUS-ITERATION 0))
(:LITERAL (:BOOLEAN :TR.UE))

DC INT:mskIN
mkove -1, RI
coal CRECKI.ZTER

C:TEIIATE)
suspend

(:LABEL (:LITfl1L (:STN3OL :END-LOOP-S)))

end..loop.5:
mo (1,13, 11
ACV It, 12

89

MOTO M2ASI. 1-2
a"4 R2. frame..lze+l, 3.2
move Cu. A23 . 1L2 ; Offset to bass of our loop subtrame now in R2

lab 12, sys.1.u..bits, 3.2
add 1.1, R2, 11

stas R1, kDDR, 11
move 11,* At Bass of cur loop subfrum. in Al

0011T (:FRAN (:ZATION 2)
isuspasivsI)

(:LITZMI (:SYNBOL :CGPT-LOOP-VAUIABLZ-)))
DC (oopy-.loop-variab1.usI..Zof}
MOTO 2. R.1
can1 CNTT-LOOP

(:NOVI (:FRANS (:ZRATION 5))
(:713.1 (:BASI 6)))

move 6, 11
cafll LOOKUP

Saoe E5.Al), 3.0
nove 3. (6,12]

(:TIRMZNATI)
suspend

(:LABKL (:LITER.AL (:SYMBOL :COPY-LOOP-VARIABLE-1)))
copy-laop,.verlable..1:

Sao E'.A3J. a'
nove 11. A2
stag R1. IT, 1

move E2, A33J, 12

add 12, fraue-sis.+1, 12

move E12,.2], 12 ; Offset to base of cur loop subfraso now in R.2

lob 12. sys-les-.bits, R.2
add 11, 12. 11
wtas 11, ADDi, at
move R1, Al Base of our loop subtrame in Al

0012IT (:713.1 1 :TBRATION 3)
:SUSPKNSIYE)

(:LITZRAL (:SYN3OL :COPT-LOOP-VARIABLE-2)))
DC {oopy-loop-variabl.2msg.ref}
move 3. 11

call CITTLLOOP

move ip, 10
move t0, C0.A3]

mova E1,.33. 11
Sao 11, A2
utwag at, InI. 3.1

move [2,03., 12

add 12, frano-uiae+1. 12

move E12.A1] 12 ; Offs*t to base of cur loop aubfraue now inV

lab 3.2, sysu-zbit. 3.2
add 11, 12, R1
.tasg 1l, ADD&, at
move 11. Al Base of cur loop subtrase in Al

90

(:30?! (:FlAIM (:ITIO1 2)
:9013IZY :SUSPENSIE)

(%FRANZ (:BASE 7))
xtag E2.&1, 10

m0o 7. I

call LOOKUP

3Ove [2.Al3. 10
noe NO, C7,A23
DC CFUT: $0
nove 10, E2.AIJ

* (ITRN ATE)
supend

* (:LLBEL (:LITRAL (:SYMBOL :COPY-LOOP-VAIABE-2)))
copy..loop-vaxiable..2:

move (1.1. 1
move R1, A2

move (2.A33]. 1.2
add 12, fruaxe..iae+1, 12
move (12.12], 12 ; Offset to base of cur loop subframe now in R2
Ish 12, sys-ln-.bits, 12
add 11, 12. 1t
stag 11 ADDI, 1t
move 11, A1 Base of cur loop subfre*e in At

* (:BOYS (:7311 (:ITERATIOI 3)
* :101STICIY :SUSPENSIVE)

* (:711111 (:S S))
rtag [3.12), 10

move 8, 11
cell LOOKUP

move (3.1]. N0
move 10, (8.12]
DC CFUT:$o
move 10, (3.13

* (:MOVE (:LITI1AL (:SYMBOL :SIGNAL))

siove true, 10
noe 10, [5,A23

(:TZIINT)
suspend

(:LABEL (:LITERAL (:SYMBOL :SQ-3)))
sq..3:

move (1.13]. 10
move 10, A2

* (:N0?! (:71112 (:1SZ 0)
*: SUSPENSIVE)

(:7111! (:UhT-ITERATION 3))
ziag E0,12]. 10O Check if value there

move [2.A3. 12

91

a"A 12. frame-ise.141, 12
move (12.12], 12
ad" R2, 3, RI
DC IT:-(mas k3N I maahPC)
a"d 11, 10, Ii

call LOOKUP

move (0,A1] 12

M O T O R 2 , E 1 1 , 2)

* C:U0T (:LITMLIL (:IM~GUl 1))
(:Fl111 (:ET-ZTERATZOR 1)))

sub 31, 3-1. 11
canl LOOKUP

SOT* 1, 10
move 10, (11.12]

* CMNV1 (:LITIIIL (:IITIGKI 0))
(:71.11((:11IT-ITZRATI01 2)))

add 1. 2-1. 1
call LOOKUP

move 0, 10
SO* 10, E11,A2)

:TRMBITE))
suspend

end

rot sq-3-mog-.rot = MSG: ((sq3CODLPL1CZ) << ays-lea bits) + 3
ref sq..4..msgraf a MSG: ((sqA+CODE-PL&CE) << syalen-bits) + 3
rot copy-loop-variabl..lmsg.xefaSG: ((copy-loop.vaiabl..1+CDDE..PLCE) << sys-lon-bits) + 3

ret copy..loOpariable..2.ASI-refISG:(Ccopy-loop.mariabl.2+CDLZPLACR) << sya..lon-bits) + 3
ref it*ra.A..usg..rof -NSG:((iterat..5+CODDPLCZ) << sys-lon-bits) + 3
ret loop-msg.rof a NSG:((itrte..5+CD.PLICZ) << syu.lon-bits) + 3
rot LOOP.CI a CB:((sq.+CODLZPLLCZ)<<16) + total-rame-size

place program-.code, CODE-PLAC3

label TOP-.PLACE a $500

;; Top level code
nodule top..cod#

;Create the frame
first we must allocate a frame

DC {topl..ref}
mOTe 10, 13
DC {loop..cb)
nove 10, 1
call ALLOCATE

DC YD:*600<<16 ;Vhere to put result
move 10, (0,12]
move argument, 11 Argument
move R1, (3,A2]
move k, 11

move R1, (slatE, 12] I

DC NSO: ((SQ_.1+COD3.PLC)aye.len.bita)+3

92

now* -1, 12
iaxA2 0, 10. 0
soad2, A2, 12, 0
suspend

eandof.€ode:
br -end-of._code

and

rot toplief a IP:((top-l+TOP.PLACZ)<<sys-len_bits) + ABSOLUTE

place library-code, LZIU,.YPL&CZ
place op-code, TOPPLACR

61..2
modulo

oZ TOPP..LAC

busy-loop:
br 'busy loop

end

60
ip m ip:(TOPoPLAC2<<syslenubits) + ABSOLUTE

;watch fetch all

;watck read write O..r3

;watch read write aO..&3
;watch writ* *100..411 f queuo
;watch fault all
break write $601
;separato on

break fault fault-type
break fault fault..linit
broak fault 6 ; dramorr

93

Appendix B

MDP Library Code

BA1 General Library

; This tile holds the library for VUDI program execution on the i-machine.
;It puts it all in a nodule librazy..code.
;It includes and defines as necessary and load* the system csll vector
;with the following (i for input, 0 tor output):

* ALLOCATI (0) - Allocate a frame on the current nods given a codeblock
* ~I Wi holds CB. Addr result will be in R2 (o).

* LOOKUP (1) - Check a location in a frame bofore writing to it
* in order to start any waiting processes.
* (E1,A2J Mi holds data.

* CNTT (2) - Same as VIDI CITT. R1 Wi holds test location,
* 10 CiW holds MSG to be spawned.

* CALLOC (3) - Allocate the number of words in RI Mi and
* return the result as an ADDR in 12 (o).

* LOOKUP.ITU (4) - Like LOOKUP, but takes its offset trom Al;
* thus it takes a base in Al (i) and an offset in R1 Wi.

CRCI..ITEK (6) - A now value for an ID in R1 (i) is put in the
* first spot of Al (i) and starts up the loop it
* the import and PC flags are set. For now, no
* PC field included in ID. This must be tixed up.

Various fault handlers axe also defined:
* CMU - Replace accessed location with info about current continuation
* then suspend.

SMN - Continue after unavoidable delay.
Additionally. somae methods accessed by non-local 1130. are supplied:

* LOCAL-.NOVI - Take a MSG of the form:

* INT:oftsoti
* ANY:valuei

* Eventually, one will be able to send any number
* of INT,ANY pairs. This stores the values into
* the offsets af the specified tram.

* LOCAL.GETC -Takes a 11S0 of the form:
* CB to allocate frame for

FD to send now YD to
* IRT offset in desination FD

*Locally allocate a frame and send it back

94

to requesting node. Also start up code block
* on current node.

label flZZPTI - *A00
label 3TACL.BASE - SAOi

stack space will be fron $&01 up. #a0O
will hold the first free location (not last used).

11CC creates (from an ADDR) a frazie descriptor FD:
31 .. 16 165. 0

<addr> EIU
where <mddr) should be right-shifted four to be properly placed.

Similarly, a codeblock is typed CD and is:
31 ... 16 16 ... 0

ga(ddr> (frsmte size>

;To sumarize:
GNC: CD -> ADDS (allocate-loc)
11CC: ADDR, -> FD
NOYS: YD x (INT x AIY)o
CUT? : ADDR -> ADDR, (because it stay* on some processor)

;;J-3achine constants
include 1"/hom*/gn/ollens/Id/hw .mdp"I
include "Ihom/gn/ellens/Id/xewq..dpI
label syslenLbits - 10
label ABSOLUTE -(1<<S)

label UUCINCKED =(1<<31)

;; Constants for loops
label posPrevious a 0
label xask.Provious - $0000ff
label posCurront - 8
label maskCurrent - WOO0
label poslext - 16
label naskiext - 8110000
label poslN a 24
label masklN a 1((poslN
label posPC = 25
label naskPC a 1<<posPC

;; tier-deined tags
tagnase 8 "CI",

tagusme 9 "IrD"
tagnase 10 "ISA"I

;Systemt calls
label ALLOCATE m 0
label ALLOCATE-VECTOR - 0
label LOOKUP a I
label LOOKUP..YICTOI a I
label CUT? = 2
label CIT.VBCTOR - 2
label CALLOC a 3
label 'ALLOC_.VZCTOR a 3

label LOKUP..ITE u 4
label LOOIUP..XTU..YCTO1 - 4
label CIIK.ITER a 5
label CHECI..ITUVECT0R a 5

nanevector ALLOCATE+32, "Allocate"

95

zamevector L00KUP32, "Lokup"

asmevector CNT+32, "CaIT"
samovec or CALLOC4320 "C.lloc"

Constants for Calloa
For boot efficiency, (ISTRUCTQ.SIZ - 1) % ISTUcrQ.ETlYSIZE - 0

label ISTIUCTQSZZI a 8
label ISTIUCT.Q_91ThYSIZZ a 2

module library,.code

terrible:
halt 0
br -terrible

; I cse of atut fault, replace CFUT with continuation info.

; Type checking is etu-ned off* when this interrupt is entered!

; When to get here, [O.A3) either contains a valid MSG, or
; is contains a [P with P1-. a-I

faultcfutloc:
move 10, IDO eeeee

move RAR, RI

At this point, I holds address to store pointer in
fault ct-t.ono-e.allocated:

; allocate a triple from stack
DC addr:FREPT<<syslenbits
move 10, Al

move (OAI, 12

DC IlT:3<<sys.leubits
add 12, 10, 13

move L3, C0,A1]

move R2, Al

; 12 eand Al now point to empty triple

move IDO, 13 eeee

fault.cfut .mg..okay:

move R3, rO,A1J

move A2, 10
move 10, 1.11

move (1l,10.], 1o
move 10, C2,11

wtag 12, CM, 12 ; Write the triple to where 11 points
ove 12, [RI,A0

suspend

; 11 is a CD with input into.

; reslt will be en ADDI in 12. Clobbers registers (except 12).

allocateloc:

check 11, CB, 12

bf 12. -terrible

wtag 11, INT, 11 ; lot strictly needed

and 11, $U±. I Get size

DC ADDI: FE_.PTR<<sys.leanbits

move 10, A1
move 0,1Ai], 12

Ish 11, sys-lenbita, R1 ; Shift size count into place
add 12, 11, I

96

move 11. E0,113

wtag 12, ADDS, 12
move tip, ip

We need support for NROVE The format of the message should be:
YD
INT:offsotl
AEYTvLIUOi

The numb.: of items can be determined from the message heade..
It -4not be I (for now) This also -ons in unchecked node.

local.invr:
move [l,A33. 1 Put trans descriptor into 1
check 1. FD, 10
bf 10, -terrible

labL 11, -16, 11 ;Shift out node number
lah Ri, sy...lon.bits. 11 Shift it into address position
stag R1, iDOL, I
move R1, 11

;First (and only) word
move [2,A31. 1
move E3,A33. 13
move ERlAIJ, 10 g ave to so* it anything waiting
move 13. rli.AiJ
be 10, lIocalAovr.dono

;We must restart a continuation because 10 <> 0.

local.movr.noxt..triple:
move 30, Al
=*O SIR, K'
send R1, 0
send CO.Ai], 0
Bends [i.AiJ, 0
;We would deallocate the triple around here

move E2.A1], R0
bns 10. 'loca.l..or.nettriple

local-mavr-done:
suspend

When a geto is done, it initiates a split-phase transaction
(according to Ianccl injuction). It sends a message to the
desired node of the form:

(header> E0,A3J
CD to allocate frame -for tl,A3J
FD to send result now YD to E2,A3J
Offset within YD E3,A3]

The job of local..getc, after allocating space, is to notify the
caller and to set the frame in motion. For obvious reasons, it
do** the two subtasks in that order.

local.getc:
;set up for ALLOCATE call

DC I9: (local.getc1syslnbits)+BSOLUTE
move 10, 13
nove E1,A31, 11
call ALLOCATE

local..getc..l:
;Built up the FD and send it back

DC {local.movr,.msg..ref}

97

stag 12. INT, 3
lab R.3, 16-sys-lon-bits, 33
move "R, R1
add 3.3, 11, 3
stag 33, TO, 3
Seud42 E2,133, 10, 0
send E2,A33, 0
send2o E3,13], R3, 0

; Set up for method specified by code block
move E1,A33, R1

lab 11, -16, 1 Shift off low lblta
lab 11. als..len.bits, 11
add 11. 2, 1 Put in length bits
stag Ri. KSG, 1

; The ADDR is still in 12
move 31, to
Send 10, 0
sond2e R1, 12, 0
suspend

fault.aend-.loc is used to wait, when we send messages too fast.
This routine is lifted, verbatim, from Waldemar's NS thesis.
It requires type checking to be disabled.

fault-.send.. bc:
move tip, 10
rot 10, -9, 10
sub 10, 1, 10
rot 10, 9, 10
move IL0, tip
move fopO, 10
Sao tip, ip

This expects R1 to hold the offset from %2.
Only R1. A2, and 13 are guaranteed. Checking must be off.

lookup..loc:
move E1l,A2J, 10
check 10, CFUT, 12

bf 12, -terrible ;Double write
bz 10, -lookup-.done

move 11R, 13
lookup..nert:

move 10, Al

ad 13, 0
end0 [0,Al2, 0

sende E1.AIJ, 0
send* A2, 0
;Deallocate triple

move r2.AIJ, 10
bha 10, 'lookup-.next

lookup..don*:
move tip, ip

For CITY, R1 should hold the offset of the test location,
and 30 should hold the message name. It least for now,
the continuation will be spawned to the same node.
Checking should be off (to avoid CFUT faults).

att .1,:

98

mOve E3l,A23, 3.2 ;Check test location
check R2, CM.T R.3 Is it a CFUT?

Rt33, -catt..aead.it ; It not, we ca send
;Instead, key it on E1l,A2)

move 10, IDO ; Save IISG

-allocate a triple from stack
DC addr FREEPTR<<sya-len-b it a
MOve 3.0, Ai
IMOve to,AI, 1.2

DC INT:3<<sys~lon..bits
add 3.2, 10. 33
SOTe 1.3, [09A13

;3R2 holds base of triple
move 1L2, Al

;FI in triple

ROve IDO, 3.0 ; Restore it
Rove 3.0, (0,AlJ
SOTe A2, 10
mOvO 3.0, ElAlJ
move (31,1.2], 3.0 Take old pointer
move 3.0, C2,AlJ Put it at end ot triple

;Store pointer to new triple
utax 3.2, CFUT, R.2 < (------------------
mOve 3.2, (31,1.2]

move tip, ip

catt-.send-it:
move 133., R.1
send2 3. 3.0, 0
sands £2, 0
move tip, ip

3.1 holds the number ot words requested.
lesu~lt will be a IDDR in 3.2.
Preserves Al through M3

calloc..loc:
DC ADD3.:F3.U.PTR<<sys-lou-.bits
move &I. 3
&*o 10, A1
move C0,1], 3.2

lsh 11, sys-lenbits .1 I Shift size count into place
add 12, 3.1, M.
SOve 11, [0,A1J

utag 3.2, ADD&, 3.2
IMOve 13, At

move tip, ip

This expects R.1 to hold the offset tram Al.
Only RI1, Al. A2, and A3 are guaranteed. Checking must be oft.

lookup-ter.loc:
move t3.l,A1], 3.0
check 10, CI7UT, 3.2
bt 3.2, 'terrible
ba 10, -lookup-iter-dan*

99

MOve Al, 3
SOTe 13, AO ;Save it
move 11R, R3

lookup-.iter..noxit
move t0, Al

send 13, 0
send (0,AI], 0
xendo [i,1iJ, 0
;Deallocate triple

Sao M2AI), 10
busn . 'lookup-iter-next
Rove A0, 3
SOTO 13. Al

lookup-itz.done.
mOve tip, ip

; hoeck~itor~loc expects 11 to have the value to put into ID E,Ai).
; It moves it there ad starts the loop if both flags axe set.
; It saves the address registers.
check.itr-loc:

DC IRT:naskIN + uaskPC
move 11, [0,A13
and 11. 10, 11
eq &I. 10, 12
bt 32. echeckiter..staxt
move tip, ip

check-.iter-.start:
DC -{loop~nmg..rot}
move NfR, 11
send2 11, 30, 0
send Al. 0
send* CslotID.A2], 0
Rove tip, ip

end

fault-voc-addr-pD + fault-efnt = IP: ((LIBRARY- ACE+:tultcutloc)<<uys-len-bits) + ABSOLUTE+UNCHECKED
fault-voc.addr-pO + fault-.send - IP: ((LIBRAYLC~aultsed.loc)<sys-len..bits) + kBSOLUTE+UNCRECKED
syseall.voc-sddx + ALLOCATE a IP: ((LIBRAY.PLAC+locatloc)<sys..len-.bits) + ABSOLUTE
syseall.vtc-addr + LOOKUP = IP: ((LIBRARYPLACE+lookuploc)<syslnbits) + ABSOLUTE+UICHECKED
syscall.voc..sddr + CITTY IP:((LIBDARY-PLAC+cntt.loc)syslenbits) + ABSOLUTE+UNCHECKED
syscall-vec..addr + CALLOC w IP: ((LIBRAIT..PLAC+callocloc)<sys.lnbits) + ABSOLUTE
rot local.Aovr..usg-.rot a NSG: ((LIBLIITYLAC+local-movr)<<sys-len-bits) +UICIECIED+4
ret local-gete-..ug-.rot a NSG: ((LIBRAIT..PLAC+loclgetc) (<sys..len.bits)+4
rot local..tetch.msg..rwf - NSO: ((LIBUARY..PLACE+ocal-jetch)<<sye.lzibits)+UCECED+4
ret local~store.Asg-ret - ESO: ((LIBRARY.PLACE+ocal.store) (<sys..len-bits) +UICHEC1ED+3
syscall-vee..add + LOOKUP-ITI1 IP: ((LIBRAYPLAC+lookupter.loc)<syslenxbits) + ABSOLUTE+UUCHECKED
syscall-vec-sddr + CNECK..1711 IP: ((LIBRURY-PLACE+chckiterloc)<<sys-lez-bits) + ABSOLUTE

include "lotaoxots.ndp" ; CFUTU RZz tor stack
IPRYIPRIIT :STACK.BSE<sys.ln.bits

100

B.2 I-Structure Routines

;This is a changed version of istruct2.udp that uses different
;representations:

EMUPTY - null CFUT
* AITIES - son-null CFUT
* DATA - non-ClFfT

It also 5003 through locml..movr.

The format of i-structure addresses are:
The low 16 bits hold the node number
The high 16 bits hold the address on that node

I-structur# addresses are typed TAGS, which ull be defined
;to ITAG.

;This is what code to fetch en I-structure cell1 looks like:
With the pointer (tagged ins) iu R1 and the I-struct offset in 12,
and the -frame offset in R3.

Lfotch.code:
dc {system.fetch..msg.ref}
send20 1. 10 Send node number, header
sond2O 11, 3 Send IS&
send2Oe A2, 13 BoSnd frame, offset
suspend

System fetch gets:
[0,A33: RSG:<system-fetch)
[1,A33: IXT:<i-structuro address>

* 2,A3J: IUT:<offset from i-structure>
[3,A33: FD:<fram of dest)
[4,A33: INT:<offset from frame>

W; ARINIG: SENSITIVE TO BIT CHARGES:
Specifically, assumes SYS..LEN..BITS - 10,

MAINODES - 2'16
system..fetch:

move (1,A3J, 11 ;Put ISA in 1
lah R1, -16. 1 Slide over address portion to del node
lsh 1. 10, 1 Slide into address position
move R1, Al
move C2,A3J, 12 ;Put offset into 12

Ct 12. E1,A1J, R3 ; If it's greater than upper bound...
bt 3, ^i-orr ; .. .it's an error.
move C0,A1], 10 ; Put lower bound in 10

sub 12, 10, 12 ; Subtract off bass
it 12, 0, 13 ; If its lower than base...
bt 13, 'i.err ; .. .then it's an error
add 12, 2, 12 ; Point past two bounds words

move (12,AI], 1 ; Take item in i-structure spot

check R1. CFUT, 10
bt 10, -data..not..prosent

;If we got here, we have the data mad can return it.
sendO [3,13J B ode number of destination
sendO (4,A31 M SG header of destination
soud20s [i.A33, 10 context, value
suspend

;;This case handles both a first and subsequent stor*.

101

, Is allocates a triple for a linked-list.

data..Aot.present:
;It we get here, 1:2.A3, the reference. R1. holds a otuture.

; got triple
DC ADDI:FZUR<<ys~leuLbits
move 10, A2
DC 3<<sys..len.bits
move E0,A3, 3.0 ; Put start location in 3.2
move 33, L2 ; A2 now holds a ptr to a new triple
add 13, 10, 13 ; Put next fre* location in 3....
move 3. (0,A21] ... and then back into free ptr

;Store 12 into 1-structure location
move £2, 10
move NO, 13.2.£13

Istore in the following order:
* Frame number of destination

"tOfse w/int frameo
Next ptr

move (3.133], 10 ; Frame number
move 10, E0,A2]
move (4,33], 10 ; Frame offs*t
Move 10, (1,3]
now* 21, [2,A22 ; Next ptr

suspend

System-store gets:
* (,33: XSG:<system-store>

(1,33]: IIT:<i-structure address>
(2,33: XNT:<offsot>
E 3,33: <data>

Uystem..tore:
mows (1,33] 1 ; Put ISA in R.1
lab 1, -16, 11 Slide over address portion to del nodes
lsh R1, 10, 1 Slide into address position
move 11, Al At now holds abs address of base
sove (2.33, 12 ;Put offset into 12

gt 12, (.1,3, 33 It it' greater than upper bound...
bt 1L3. -ierr . .. it's an error.
move (0.3) 30 Put lower bound in 10
sub 12. 10, 12 ;Subtract off base
it 12. 0. 33 ; If it'sa lower than base...
bt R3, -i.errthen it's an error
add 12, 2, 32 ; Point past two bounds words

move (32,A3. R1 ; Take it** in i-structure spot
check 11. CFUT, 10 ; It had better be a efiature.
bf 30. 1..err ; It not, it's a write-twice error.

move E3, 33], 13 ; Put data value into 13
move 13, (12,A3 ; Store it into i-structure

DC Clocal..movr..asg..ref}
ba R1. 'sends-.done

At this point, R1 holds base of next linked-list entry.
10 holds the lockl-movr-msg..ref.

send-,loop:

102

move |,1

sen20 O.A,1. 10 ; Send node S, ISO header

sendo (OLI3 ; Send WD
snead2oO El,,L13. 13 ; Send offset, data.

move (2,A1., RI
bzr -send-loop

sends done:
sopead

;; Out of bound* or double-write error.

i.err:
halt 1

end

103

B.3 Loop Support

; ; Constants for loops
label posPrevios = 0
label maskPrOvious $00 f

label posCarrent = 8
label maskCurr*at a WO

label posler- = 16
label muaskloxt - $ftOOOO

label pos3 ,, 24
label maskU i<<poeslN

label pooPC - 25
label maskPC a 1<<posPC

; System cal.s
label CUICI._Tfl = S

; Expects 10 to have the value (mask! or maskPC) to be orld into

the ID I1 (+/-I) off from the current iteration.

It moves it there and starts the loop if both flags are set.

; It saves the address registers.

; For a- w only. ignore wraparound
checkoter.-loc:

move [2.A J, 12

add 3.2, 1, X2

; This sequence converts a value of k to 0. Trust me.

; go 12, [2,A2J. R3

S Wt 8 ,3. IT. R3
S neRg 13, 13
S sad 13, 12,12], 3

; sub Z2, R3. A2

; To! I can do even better:
; it 12, [2.k2], 3
; ut.t 3., IT, 13

Reg 33, 13

* and 12, 3, 32

; Whoops, muet also convert -1 to k-i
sub 12, [slotl.2], I1

; go 1I, -1, I1

s itag I, IT, 1

R eg I. I
and 1i, slotlA2], IL

sub 32, I1, 12

; Caps: above converted k-i to 1, not v.v.

it 12, [slotlA2], 13
its 3, IT, 3

Reg R3. 13

and 12, 13, 12

It 12, 0, 13

stag 33, IT, 3

neg 33, 13
and 33, EslotI,52], 13

add 12, 13, 12

add 12, trame.sie+I, 12

move [12,A2], 11

or i, 1O, 1

104

DC INFT:uaukIN + uaskPC
ad 1.1, 1.0. 1.3

eq 13, .0, IM
bt 3.3, -check.itor..utazt
Soy0 I, [1.2,A23
save f ip. ip

check-.it.r-start:
not 1.0, 1.0 Turn off flags

ad &I1. 1. 1.1
M 1eR. [33.123

sub 1.2, frmne..sizo+1, 1.2

DC {loop..ag.ret)
move M.3 R3
uen42 33, 1. 0
sead2o 12, 1. 0
move tip. ip

105

Appendix C

Source Code

0.1 Convert Hybrid to Complex J

-e- Node:Coinon-Lisp; Package:ID-COMPZLfl; 3ase.10 --

,;hybrid-to-tj converts hybrid cod* to complex J-aschine code.
*;The next stop in to send it through cj-to-sj to change it to

J-mschizne u-expressions.

(in-package lid-compiler)

(detcoumpiler-module convert-hybrid-to-complex-j id-compiler
(:input vnd-instriictions, code-block)
(:function convert-hybrid-lo-cj)
(:output wad-instructions code-block) ;This is a lie
(:botors-tUnction procedure fil-as.-betore-def)
* (:ster-nnction procedure assi-alter-dot)
* (wrsppor-macro vnd-tile-assombler-urapper)
(:options input-tile vnd-autput-tile Ynd-output-tile-tormat)

*;3-machine constants
;;; Originally, these were numbers. They are more readable as symbols and
;;; can be replaced by NDPSin. The constants are needed to know it they're okay literals.
(detconstamt *eys-lon-bitsc 10)

(detconstant Ss-tag 'Ss)
(deftostant syn 0)

(detconstant int-tag 'int)
(detconatant Int 1)

(detconstant id-tag 'td)
(defconstant td 9)

(Aotconstaut boolean-tag lbool)
(detconstant bool 2)

(dotconstant addz-tag 'addr)
(detconstsnt addr 3)

106

For II?. and SYNOLs M?
(defoonstafts special-tag $special-tag)
Cdefconsteant special-.tag 33)

(defconstat allocate-yoctor #ellocat...vector)
(dfoonstant allocate-voctor 0)

(deoonstant lookup-v*41or 'lookup-.vector)
(defoonstent lookup-voctor 1)

(dfotonstaat cutt-vector 'eatt-votor)
(defonstant onst-vector 2)

(defoonstant oast-loop-wector Iontt..loop-vootor)
(defoonstat ontt..loop-votor 3)

(deoonstant calloc-veotor Icalloc..,eotor)
(deiconstant oallec..uector 4)

(defonstant check-iter-voctor scheck-iter-vector)
(dot const ant checkiter-vector 5)

(defconstant OposI~s 24)
(defconstant eposPCe 25)
(defoonstant *naskIXe (orpt 1 sposIKO)
(defoonstant OmaskPCe (orpt 1 eposPC*))

(detma conver%-hybrid-to-cj (cb)
(lot* C(cj-instructions (convert-hybrid-to-cj-inner (dataflov-graph-root-set eb)

(dataflow-graph-get cb :frame-descriptor)
(setf (dataflow-graph-roat-sot cb) cj-.instructions))

ob)

(defun convert-hybrid-to-cj-inner (instructions frame-desc)
(if (null instructions)

ail
(let. ((istruction (car instructions))

(opcode (car instruction))
;Get rid of hybrid register references -- ouch
(operands (mapicar $'transform-hybrid-registor (copy-list Ccdr instruction))))
(ouspensive-code (mutat e-suspensive-operands opcode operands))
(fa (oonvert-opcode-to-fa opcode)))

(if (null fn)
Cay-error :fatal nil (format nil "So opcode for function 'S" opcode)))

(append
'((hybrid-instruction ,instruction))
suspensilve-code
(apply fn frae-dosc operands)
(convert-hybrid-to-cj-inner (cdr instructions) fraae-desc))

(defyar eoonversion-liste)

(defun convert-opcode-to-fn (op)
(edr (assoc op ecoxvrsion-liste)))

;Very inefficient
(defun transform-hybrid-register (op)

(if (and (listp op)
(eq (car op) :register)
(nuaberp (second op))

'(:teaporary (:bass .(second op))
op))

107

(detmacro suspensivep (operand)
'(member sBusponsive ,operand))

,*A low hours with this section could yield some major optimizations.
,,not to mention what could be done with register allocation.

(defus mutate-susponsivo-oporands (opcode operands)
(le% ((suspensive-code (mut ateo-suspensive-operands- inner operands)))

;special
(it (not (eq opoo :continue-test))

(if susponsiv*-code
(cons 1(susponsive- instruct ion)

remove-uplicates to ensure only ono
check for (sadd (:suspensive X) (:suspensive X) Y)

(append (remove-daplicates suspensi've-code :test VaIqual)
'((suspensive-check-done))))))))

(detiaa mut ate-susponsive-operands- iner (operands)
(if (null operads)

nil
(append

(it (suspensivep (car operands))
(propn

(setf (car operands) (remove :suspensive (car operands)))
((suspensive-operand .(car operands))

(mutaLte-suspensive-operands-inne~r (cdr operands)))))

(dotvar econversion-liste)
(setq econversion-liate nil)

(defoacro defconversion (hybrxd-name hybrid-symbol operands body)
(propn
(sotq econversion-liste

(cons (cons hybrid-symbol hybrid-name)
econversion-liste))

(lot ((full-op-list (cons 'frame-doec operands)))
'(defun *hybrid-name ,full-op-list

'froa-deeC
*body))))-

(defun frameo-base-offset (operand)
(if (eq (c& operand) :frame)

(base-oxiset operand)
(error :fatal nil "Illegal operand supplied when frame-baxe value expected.)))

Used by cj-to-sj
(defun message-base-offset (operand)

(it (eq (car oporand) :message)
(base-offset operand)
(error :fatal nil "Illegal operand supplied when message-base value expected."))

(defun base-offset (operand)
(it (eq (car (second operand)) :base)

(second (second operand))
(error :fatal nil "Illegal operand supplied when base-offset value expected.)))

(defun literal-base-offset (operand)
(it (mad (eq (car operand) :literal)

(eq (car (second operand)) :base))
(second (second operand))
(error :fatal nil "Illegal operand supplied when literal-base value expected."))

(dofconversion getc :get-context (context-slot return-slot)
'((reserve (:register scratch))

108

(move (:j-regiater A2) (:register scratch))
(*tag (:register scratch) (:literal .int-tag) (:register scratch))
(ish (:register scratch) (:literal .(- 16 esys-len-bitas)) (:register scratch))
(reserve (:register scratch2))
(move (:J-register 111) (:register scratch2))
(addl (:register scratch)

(:register scratcW2
(:register scratch))

(free (:register scratch2))
(stag (:register scratch) (:literal fd-tag) (Oregister scratch))

(8*ondO (:literal 1)
(sen~dO (trot locml..getc))
(.0.40 ocoatoxt-slot)
(soadO (:register scratch))
(free (:register scratch))
(sendeO 6(frmme-base-offset return-slot))))

;;Something should be done to handle falling into a loop
(defoonversion label :label (label-name)
'((label ,label-name)

(nove (:message (:base 1) (:j-register 12)

(defun lookup-into (dest)
(if (eq (car deat) :frame)

'((move (:literal ,(frame-base-offst dest)) (:j-registar RM)
(call (:literal ,lookup-vector))

;For nov, no loops
(defconversion nove :move (source dent)
(append (lookup-into dest)

'((move saource ,dent))))

(detconversion move-identity :move-identity (source don't)
(append (lookup-into dest)

'((move source ,dent))))

(defconveraion cntt :continue-teat (check-slot cont)
;Convert it Irom (:literal (:symbol :SQ-i)) to (:ref :SQ-1)
'((move (:ref .(second (second cont))) (:J-register 10))
(move (-literal *(frame-base-offset check-slot)) (:J-rogiseor a1)
(call (literal *cntt-vector))))

(defconversion catn :continue (cont)
'((sendO (:j-register NI))

;Convert it from (:literal (:symbol :SQ-1)) to (:ref :SQ-i)
(sendO (:rot .(second (second cont))))
(sende0 (:j-register 2)

(defconversion movr :move-remote (frame-ptr offset value)
'((SendO ,frams-ptr)
(sendO (:rot local.movr))
(sendO *framo-ptr)
(sandO *offset)
(sondeO ,value)))

;This should set a flag
(defconversion terminate :terminate 0)

'((suspend)))

(defconversion le :<- (si s2 d)
(append (lookup-into d)

'((2a *sl s2 d4))))

109

(dfoaversion Is :< (s1 s2 d)
(append (lookup-into d)

(4fcnrIonSt .8 (.1 2)

(defconversion go :>u (I s2)
(append (lookup-into d)

'((Wt *si .2 d4))))

(d.foonversion g-. : (1 s2 d)

(append (lookup-into d)
'((eq .ini S2 d4))))

(4.foonversiou J-eq :) (1 s2 d)
(append (lookup-into d)

'((nOq *si*s2 d))))

(defconversion J-noq2 :<> (1 s2 d)

(append (lookup-into d)
'((aeq ,si s2 .4))))

(defconvozsion J-nq :/a (al s2 4)

(append (lookup-into d)
'((nd s1 s2 d4))))

(defconversion J-j-o %anr (sl 2 4)

(append (lookup-into d)
'((or .st 2 d4))))

(defconversion J-aub :or (s1 a2 d)
(append (lookup-into 4)

*((orb S1l s2 d))))

(dofconvorsion J-add :- (s1 %2 d)

(append (lookup-into 4)
'((addb *I s.2 d4))))

(aefoonversioA J-uuid :+ (.1 .2 4)

(append (lookup-into d)
'((add ,sI s2 d4))))

(defcouversion J-vot :*o (l 42)

(append (lookup-into 4)

(de.Uonversion J-ae :nb$ (sn d)
(append (lookup-into d)

'((reserve (:register scratchi))
(reserve (:register scratch2))

(ask a -31 (:register scrintch1))

(Zor .8 (:register scrmtchl) (:register scratch2))

(sub (:register .cratch2) (:register scratchl) d4)

(free (:register scratchl))

(free (:register scrutch2)))))

(defconversiou J-*aaz mlax (a b 4)
'((reserve (:register scratchi))

(append (lookup-into d)

(reserve (:register .crasch2)) a >- b Ia < b

(go a *b (:register stratchi)) ; i: T RI: F

(stag (:register scratchl) .int-tag (:register scratchi)) ;RI: I IRI: 0

(neg (:register scratehi) >.register Scratchi)) RI1: -1 1 I 11 0
(ad (:register scratchi) a& (:register scratch2)) R 2: a R 2: 0
(not (:register scratchi) (:register scratchi)) RI1: 0 I : -1
(ad (:rogister scratchi) ,b (:register scratchi)) RI1: 0 R 2: b
(or (:register scratch2) (:register scratchi) ,d) ;a Ib
(free (:register scratchl))
(free (:register scratch2)))

(defoonverajon J-nin :=i (a b d)
(append (lookup-into d)

'((rese~rve (:register scratchi))
(reserve (:register scratch2)) ;a >- b Ia < b
(go a ,b (:register scratchi)) RI1: T 11: F
(ntag (:register scratchi) int-tag (:register sciatchi)) RI1: I I : 0
(neg (:register acratchi) (:register scratchi)) RI1: -1 I : 0
(and (:register scratchl) ,b (:zegister scratcb2)) R 2: b R 2: 0
(not (:register scratchi) (:register scratchi)) Rl1: 0 Ri : -1
(ad (:register scratchi) a (:register scratchi)) RI1: 0 R 2: a
(or (:register scratch2) (:register acratchi) .4) ;b Ia
(free (:register scratchi))
(free (:register scratch2)))

;lot used
(defconversion loop-setup :loop-setup (label-name)

'(let (frame-size (frsme-doscriptor-frame-size frame-desc)
(k-slot (comput-slot -offset t :maximtu-itrations))
(slots-per-iteration (frame-descriptor-net-available-iterat ion-slot frazne-desc))
(loop-saetup-label (geusym 'loop-loop)))

'((do (:literal ,(e frame-size (expt 2 esys-len-bitse)))
(move (:J-registor A2) (:j-register 12))
(stag (:j register 12) *lnt-tag (:j-register 12))
(add (.J-rogiator R2) (:j-registor 10) (:j-registor R2))
(stag (:j-regiuter A2) ,addr-tag (:j-register 12))
(move (:j-register 12) (zj-register AM)

(move (:frae (:base *k-slot)) (:J-register 11)
(sub (:J-register R1) (:literal 1) (:j-registor R1)

(move ,(+ 2 frame-size) (:j-registor 12))
(add (:J-register 12) (:fraste (:base ,k-slot)) (J-register R2))

(dc (:literal emaskIle))
(01 (:J-register 12) (:j-reginter 10) (:j-rogister R2))

(move (:literal 1) (:J-register 13))

(label ,loop-setup-labol)
(move (:J-register i2) (:framie (:loop Al))
(ltb (:J-register 13) (:j-regiater 11) (:J-register 10))

(add (:J-register 12) (:literal *frome--itorat ions) (:j-ragistor 12))
(add (:J-register 13) I (:J-register 1L3))

(bt (:j-registor 10) *loop-setup-labol)

(do ,(lognot (logior emasklNe emaskPC*)))
(ad (:J-reginter 12 (:J-register 10) (;J-regiater 12)

(move (:J-register R2) (:frame (:loop (:j-regintor 13)))

(move (:j-register R2) (frame (:loop 0))

(sove (:frame (:loop M) (:j-rogistur R2))
(and (:J-register 12) (:j-register 10) (:j-register R2))
(add (:J-register 13) 1 (:I-xregistor 13))

(move (:J-register 12) (:frame (:loop (:J-register R3)))))))

;from (:literanl (:eyubol :SQ-l)) to (:label :SQ-l)

(defha convort-labol (1)
c(:ts~ggd-litera. *special-tag (:label *(second (second 1)))))

(defconversion brf :branch-false (91 22)

'((bf at1 *(convert-lsbel *2))))

(defconversion brt :branch-truo (s1 s2)

'((be ai ,(conv~rt-labol .2)

(delconversion bra :braach-zoro (at s2)

'((bn at *(convert-labol .2)

(defoonversion bran :brach-not-zoro (at s2)

'((b at .s (convort-labol s2)

(defconvorsion br :branch (a1)
'((br .(convert-labol. sI)

(defoonversion hec :ind.:-curront-conltort (frsas-base do*%)

(append (lookup-into des%)
'((reserve (:r~gistor scratch))

(nove (:j-rogister 12) (:register scratch))

(wtag (:rogister scratch) (:literal ,int-tag) (:register scratch))

(add (:register scratch)
(:literal .* (literal-base-offset tramse-base)

(expt 2 #zys-lenL-bivs*)))

(:register scratch))

(ish (:register Scratch) (:litera~l .(- 16 OSYS-len-bits*)) (:registez scratch))

(add (:register scratch) (:J-register VNR) (:rog:.tor scratch))

(stag (:register scratch) (:literal ,fd-tag) (:register scratch))

(move (:register scratch) ,dost)

(free (:register scratch)))))

;These axe okay because the operads sill be suspensive

;; sd caught by mutate-suspensive-operanM.
(deoonversion ts%2 :test-2 (s1 s2 dent)

(append (lookup-into dest)
'((move (:taggod-litoral ,boolean-tag 1) *des)

(defconversion tatl :test-I (a1 dos%)

(append (lookup-into doe)
'((move (:tagged-litersl *boo3.oantag 1) ,dos%))))

(defconversion *%*%I :Special-test1l (si)
£((suspeasivo-instructiol)
(suspeasive-oporad s l)))

(dofconvsrsion roe :return-contezt (source dest)

(append (lockup-into dent)

'((move (:tagged-litersl ,booloan-tag 1) *dost))))

112

0.2 Convert Complex J to Simple J

-- Nfod:Common-Lisp; Packag*:ID-COMPZLfl; Base:1O -*-

cj-to-sj converts complex 3-machin, ced* (as produced by hybrid-to-cj)
into J-machine s-expressions. The s-expressions will correspond on en
exact one-to-one basis with 3-machine instructions. The final stop is
to send it through sj-to-j. in the file of that name.

Complex i-machine cod* differs from J-machine code in several ways:

I. At the beginning of every possibly suspensive instruction,
0 suspensive- instruct ion)

appears. For each possibly suspensive operand.
(:suspensive-oporsnd <operand>)

ge These must be converted to appropriate code.

I (:reserve <symbol>) and (:fro* <symbol>) are used to bind the value
eg of the symbol so that (:register <symbol>) is meaningful. The
~. usage is of the form:

(:reserve (:register scratch))

(:move (:J-register A2) (:register scratch))

(:free (:register scratch))
The usage is purposely verbose. to allow a change of representation,
as well as error-checking. (Reserving a second register of the same
name. using a nonreserved register, and freeing a nonroserved register

,, are all errors.)

X Specific register names are denoted with :j-registor, i.e. (:j-register)A2).
eg The only time specific GP~o axe used is to set up for CAL~s. This is
,, almost certainly a violation of abstraction. This is a source of potential
eg bugs as well if this module trashes those registers.

X. g o consideration is made whether the operation can fit in one .-instruction.
,. In many cases, it cannot. For example, this is a legal cj instruction:

ge (add (:frame (Obass W)
(:literal 82932)
(:frame (:base 9))

,,I There are both :literal mad :tagged-literal operands.

..The register allocation is correct and stable, to the best of my knowledge.
It is non-optimal but acceptable.

(in-package lid-compiler)

;;; For some reason that I cant% figure out, I'm having trouble getting neq.

(defmacro neq (a b)
'(not (eq a& W

(defcoupiler-modul* convrt-complex-j-to-sinple-j id-compiler
(:input vud-instructions code-block) ; A lie
(:before-function procedure roset-cj-to-sj-system)
(:function convert-cj-to-mj)
(:output vud-instructions code-block)) Y uck! I've got to fix these abstractions

(do-fun rset-cj-to-sj-systeu (0
(setq ej-instructionse nil)
(aetq evirtual-registerse nil)

113

(set elee-rgiser-lst*goal -purpose*-rogs))

(defun. my-error (a b 0)
(print 0)
(break)
(error a b 0)

;;; These are functions to specify basic J-zachine characteristics.
(defun make- tagged- it oral (1)

(cond ((&nbeip 1) '(:tagged-literal ,int-Sag .1))
((ref erencep 1) '(:tagged-literal ,spocial-tag l1))
((eq (car 1) :tagged-litersl) 1)
; Converts from (:lsbel (:literal (:symbol :foobar))) to
;:tsagged-literal special-tag (:label (:symbol :foobarM)

((eq (car 1) :label)
(list :tagged-litoral special-tag (list :label I))
(list :tagged-literal special-tag (list :label (second (second (second 1))))
((eq (car 1) :literal)
(11 (listp (second 1)

(if (eq (car (second 1)) :integer)

'(:tagged-litorsl. *nt-tag .(second (second 1))
(list %tagged-literal special-tag (second 1))

(list :tagged-literal int-tag
(if (listp (second 1))

(if (eq (car (second 1)) :integer)
(second (second 1))
(my-error :fatal nil "Illegal format of literal,,))

(second 1))))
(t nil)))

;Only converts if appropriate
(defusL mak-t agged-liteoral- if-appropriatea (1)

(let ((result (mske-tagged-literal 1))
(if result

result
1))

(defun hex-value Wh

((and (>a k OW)((i h *\f)) (+ 10 (-h #\&)))))

(dofaacro hex-to-dec (h-string)
(do ((count (- (length h-string) 1) (- count M)

(value 0 (+ (o value 16)
(hex-value (Char h-string count)))))

(Ccount 0)
value))

(defconstant opO-literalh (list
(cons STm-tag 0) nil
(cons boolean-tag 0) ;false
(cons boolean-tag; 1) ;true
(cons int-tag (hex-to-dec "80000000"))
(cons mnt-tag (hex-to-dec "ff"))
(cons int-tag (hex-to-dec "3fV))
(cons int-tag (hex-to-dec "ffffll))
(cons int-tag (hex-to-dec "fffff")))

(defun opO-literal-p (1)
(opO-litorsl-p-inner 1 nil))

114

(defun opO-xtondd-literal-p (1)
(opO-litoral-p-inner 1 0)

(defua tagged-literal-p (op)
(eq (car op) :taggd-literal))

(defun J-register-p (op)
(or (eq (car op) :J-regiater)

(eq (car (traznalate-oporaid op)) :J-register)))

;To distinguish it from dtcs frames.
(det'ia j-tranop Cop)

(eq (car op) :frm))

(dofun J-offs*t-p Cop)
(or (j-fraaep op)

(j-messagop op)
(i-tmporary op))

(dot uA J-tomporary (op)
(eq (car op) :temporary))

(defun J-xessagop (op)
(eq (car op) :message))

(dofian labelp (op)
(eq (car op) :label))

(defun J-syubolp C)
(eq (car op) :symbol))

Cdotun referencep Cop)
(eq (car op) :rof))

(dettw biudingp (op)
(eq (car op) :binding))

;(prin.t (output-tagged-literal (mako-taggtd-litersol '(:litoral int)

Cdefun opO-litoral-p-innor (1 *xtondodp)
(if (tagged-literal-p 1)

(lot* ((tag (second U)
(value (if (eq tag int-tag)

(oval (third 1) To allo us to use symbols instead of ints
(third 1)

(cand ((numberp value)
(if (member (cons tag value) opO-literaLis :test 8'equal)

(it extondedp
(and (eq tag int-tag)

0-. value -64)
(<- value 63))

(and (eq tag mt-tag)
0- value -18)
(<a value 10))

((abelp value) nil) Safe assumption
(t nil))

(defum opO-operand-p (op)
(opO-operand-p-inzer op Ail))

(dofum opO-extonded-operand-p (op)
(opO-operand-p-inner op 0)

115

(d~fum opO-operaad-p-inuor (op extendedp)
(cond ((i-register-p op)

(let* ((actual (trsnslat-operand op))
(value (second actual)))

(or (genl-purpose-rog-p op)
(eq value 'AO) (eq value 'Al) (eq value PAD) (eq value '13))))

((tagged-literal-p op)
(op0-litoral-p-inner op extondedp))

((j-offset-p op)
(let ((offs*t (base-offset op)))

(Cond ((numberp offset)
(if .rtendedp

(ad (< offset 63) 0>- off*et 0))
(ad (< offset 16) On offset 0)

((goal-purpose-reg-p offset)

,; egister-oriestod opO mode
(defun ropO-operand-P (op)

(lete ((operand (translate-opersad op))
(value (second operand)))

(and (i-register-p operand)
(or (genl-purpose-rog-p op)

(member value '(10 Al 12 A3 11R IP)))))) M ore exist, but these only ones used

(dafcoustant genzl-purpose-rogs '(13 R2 R1 10))

(defun genl-purpoe-reg-p (operand)
(let ((op (translate-operand operand)))

(or (biudiagp op)
(and (J-register-p op)

(member (second ap) geul-purpose-rogs)))))

(defunL basic-add (argi &rest argo)
(+ (if argi 1 0)

(count % argi)))

a;Current register scheme due in part to late.

; This system is still primitive. Some notable omissions:
- It night reload a register with a value already in it.

(defvar *free-register-liste)
(setq efree-registor-list C geil-purpose-regs)

(defvar symbols -bound-to-rogs)
(setq symbols-bound-to-regs nil1)

(defun request-register-inner 0)
(if (null efzee-regist~r-llste)

(my-error :fatal nil "So registers available in request-register-inner')
(lot* ((temp (remove PRO *free-register-liste))

(rog (if (null tomp) '10 (car %Gap))))
(setq *free-registor-liste (remove rog efree-registar-liste))
reg)))

(defun request-appropriate-register (item)
(if (gonl-purposo-reg-p item)

(my-error :fatal nil "Reg-reg move requested!"))
(if (and (tagged-literal-p item)

(not (op0-*xtonded-litoral-p item)))
(if (member '10 efree-rogister-listo)

(progn (setf efroe-register-listo (remove '10 efree-register-listo))
(setf symbols-bovmd-to-regs (cons (cons (gensym 're&) '3R0) synbols-bound-to-rogs))

116

40(binding , (osar symbols-bound-to-regs))
;It we get here, we need to slide R0 into another register

(let. (Cr0-pair (rawsoc PR0 symbls-bound-to-regs))
(new-reg (request-register-inner)) ; Get another register
(cur-ame (genLsym)) , lam to return with now register

Rail the move -- to a global??
(if (aull ro-pair)

(my-error :fatal nil 10 invariant violated"))
(eait-j-instruation. '(nor* (:j-rogister 10) (:j-rogister ,now-rag)))
(self (cdr rO-pair) new-reg)
(sesq symbols-bound-to-regs

(cons (eons our-nome PRO)
symbols-bound-to-regs))

'(:biading ,cur-namo)))
(rq uta nrgso),;

(defun request-any-register 0)
(lot ((rag (eus-eitrinr)

(setq symbols-bound-to-regs (cons (cons (gensym)reg) reg) symibls-bound-to-regs))
'(:binding ,(car symbola-bound-to-regs))))

(defun return-register (reg)
(it (eq (car reg) :binding)

(let ((pair (assoc (second reg) symbols-bound-to-regs)))
(it (null pair)

(my-error :fatal nil "Illegal binding freed in return-register')
(lot ((actual (cdr pair))

(setf efree-register-liste (cons actual Cfree-rgister-liste))
(setq symbols-bound-to-regs (remove pair symbols-boud-to-rags))

(my-error :fatal nil "Illegal register return'l)))

(defun binding-to-register (symbol)
(if (and (listp symbol)

(eq (car symbol) :binding))
(let ((pair (&ssoc (second symbol) symbols-bound-to-rags)))

(if (null pair)
(my-error :fatal nil "Binding not found")
'(0j-rogistor .(cdr pair)))

E, mit comands

This "forces" register assigmonts when the code is emitted.
(defun translate-operand (op)

(if (listp op)
(cond ((null op) nil)

((eq (car op) :binding) (binding-to-register op))
((eq (car op) :register) (traslate-virtual-register op))
(t (cons (translate-operand (car op))

(translate-operand (cdr op))
op))

(defvar ej-instractionse nAi)
(sotq ci-instruct ions* nil)

(defun emit-i-instruction (inst ftey (pass-through nil))
(lte$ ((opcode (car ins%))

(operands (if pass-through
(cdr inst)
(mapear #'translate-operand (cdr inst)

(instruction (cons opcodo operands)))
(sotq ej-instructionse (append ej-instructionso

(list instruction)))
For $race purposes, just return latest new instruction

117

instruction))

(defun anit-j-Lustructioas (ilist)
(mapear t'.ait-j-istruction just))

;; Movement rout ixes

(defun mAe-legal-mve (source dest)
(if (or (gonl-puzpose-reg-p source)

(genl-purposo-rog-p jest))
At least oae is a register

(mse-lg~luov-uih-rgisersource dest)
(lot ((register (request-appropriate-register source)))

(mske-legml-uov* source register)
(mke-legal-move register dost)
(returz-register register))))

;;possible operands include:
;; (:register ..)

;; (j-register.)

;; (frme (:base 8))
;; (taggod-litoral * 8)

(defun make-legsl-miove-with-register (source dest)
(if (gonl-piarposo-reg-P source)

(it (or (ropO-opersnd-p dest)
(opO-oxtemded-opersnd-p dest))

(emit-j-instruction '(move *source dest))
;; If go get here. source is a register. but Lest is too big
(make-legal-big-move source dest))

(it (genl-purposo-rog-p dest)
(if (or (ropO-oporand-p Source)

(opOoeztnded-operand-p Source))
(emit-i-instruction '(move source dest))
(make-legsl-big-movo source dest)))))

;;mske-legsl-bi-ove called when one operand is a register and the
;;other is something that can't be represented in opO or register-oriented
;;opO mode, such as a big literal or a frame value with a large offset.

(defun maLke-legal-big-move (source Lest)
(if (genl-purpowe-reg-p source)

;; destination must be frame (or equiv.) (i.e. can't be literal)
(lets ((offset (base-offset dest))

(tagged-offset (make-tagged-literal offset))
(reg (request-appropriate-register tagged-offset))
(new-operand (replace-offset reg Lest))

(make-legal-move tagged-offset rag)
(make-legal-move source new-operand)
(return-register reg))
;If we get here, dest must be a gpr

(coaL ((tagged-literal-p source)
(it (opO-literal-p source)

(emit-j-instruction (list 'move source Lest))
(let ((actual-Lest (translate-operand Lest)))

(if (equal actual-Lest '(:j-register 10))
(emit-j-instruction '(dc source))
(message :fatal nil 10 not reserved when required)))

(t (ay-orror :fatal nil "Unhandled case in make-legal-big-move"))

(defetruct code-bundle
operand-list

118

(defun bundle-return-regist-re (bundle)
(mapa 99'rtturn-register (code-bandl-rep-so-be-froed bundle))
(sotf (code-buadle-regs-to-be-freed bundle) nil)
bundle)

(defun convert-cj-to-sj (ob)
(mapc S 'make-legal (dataflou-graph-root-set cb))
(setf (dataflow-graph-root-set eb) oj -instruct ionso)
ob)

(defun sake-legal (instruction)
(lot* ((opcode (car instruction))

(operands (if (eq opcode 'hybrid-instruction)
Cods instruct ion)
(mapcar I'mk-tagged-litersl-ii-appropriate (cdr instruct ion))))

(num-ope (length operands))
(instruction (cons opoo operands)))

(it (pseudo-op-p opcode)
(process-pseudo-op opcode operands)
(cond ((a unm-ops 0) *Typically, suspend

(emit-i-instruction instruct ion))
((- num-ops 1) ;Typically, send or branch
(it (eq opcode 'br)

(make-branch opcodo operands)
(make-into-for. opcod.

operands
(cons s'ezt-op0 'source))))

,Shouldn't something for branches be here?
(-num-ops 2) ; Typically move, unary op. or bcc
(cond ((equal opcode 'move)

(make-legal-move (first operands) (second operands)))
((or (equal opoode 'neg) (equal opcode 'not) (equal opeode 'rtag))
(make-into-form opoode

operands
(cons I'ezt-opO $source)
(cons S'gpr 'dest))

((member opcode '(bf bt bs bzx))
(make-branch opoode operands))

(I
(message :fatal nil "Illegal opcode in make-legal')

CCnum-ops 3) ; Typically binary op (all have same fornat)
,It should try exchanging the first two operands to execute more cheaply

(make-into-fors opcode
operands
(cons *'gpr 'source)
(cons 'opO 'source)
(cons 'gpr 'dest)))))

;Some conditional branches can't be encoded into one instruction; additionally, in
;~my simple one-pass assembler, I can't determine displacements, etc. Bence, all
;~jumps will be converted in a pessimistic way, e.g.

bz &I, labell
bum RI, new-label
br laboll

now-label:
;The types of branches are: bf, bt, bin, b-.z, bnil, bnnil.
;(The last two aren't used by hybrid stuff but are in for completeness.)

(dofvar branch-opposites '((bf .bt) (bs .bnsz) (bnnil .bnil)

(bt .bf) (bnus bin) (bail .bunil)))

(defun usko-branch (opcode operands)

119

(it (Oq epc.4. 'by) ;Absolute branch
(make-legal '(move ,(car operands) (:J-register ip))
(let (;(now-labol (genaym 'Jog))

(opposito-opcode (cdi (assoc opcode branch-opposites)))
(condition (first operand*))
(original-label (second operands)))

*The following line would give us an infinite loop!
* (make-legal '(.opposito-opeode *condition (:label *now-labol)))

*Instead, do a violation of abstraction:
(make-into-term opposite-opcods '(,condition 0:sagged-literal *int-tag 2))

(cons S'gpr $source) (cons SVet-opO #source))
(make-legal '(br .origizal-label))
(make-legal I (align))

* (make-legal '(label (:literal (:symbol norv-label))))

(defun replace-oftaet (reg operand)
(list (car operand)

(list
(caadr operand)
reg)))

(defon, gpr (sig dir bundle)
(it (genl-purposo-reg-p arg)

(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list aig))
repg-o-be-treed (code-biundle-roga-to-be-freed bundle))

(mak-mov-with-register arg dir bundle)))

(detun, make-move-ith-register (arg d~r bundle)
(let ((reg (request-approprite-register aig))

(it (eq dir 'source)
(prepn

(make-legal-mao aig reg)
(make-cede-bundle

:eperand-list (append (code-bundle-opermnd-list bundle) (list rog))
:regs-to-be-freed (append (code-bundle-regs-to-be-freed bundle) (list reg))))

;;dest
(prepn

(make-legal-move reg arg)
(make-code-bundle

-operand-list (append (code-bundle-operand-list bundle) (list reg))
:rogs-to-bo-treed (append (code-bundle-rogs-to-be-freed bundle) (list rqg)))))

(defmacro base-tagged-offset (a)
'(make-tagged-literal (base-offse*,))

(defun opO (arg dir bundle)
(if (opO-operand-p arg)

(make-code-bundle
:operand-list (append (code-bundle-operand-list bundle) (list sig))
:rogs-to-be-freed (code-bundle-regs-to-be-freed bundle))

(make-big-itoa-inte-gpr arg dir bundle)))

(defun mak-big-item-isto-gpr (arg dir bundle)
~There are two possibilities:
;(1) it is a frame reference that we could convert (in which case direction is irrelevant)

(if (eR (car sig) ftrame)
(lete ((value (base-tagged-offset srg))

(reg (request-appropriate-register value)))
(make-legal-move value rag)
(make-code-bundle

:operand-list (append (code-bundle-operand-list bundle) (list (replace-offset reg arg))
:r~ga-to-be-freed (append (coe-bundle-regs-to-be-freed bundle) (list reg))))

120

;; (2) it must be stared into a separate register
(make-moe-ith-register erg dir bundle)))

(defun ext-oO (erg dir bundle)
(if (opO-extonded-operand-p erg)

(make-code-bundle
operand-list (append (code -bundlo-operand-list bundle) (list erg))
trogs-to-be-freed (code-bundle-regs-to-be-freed bundle))

(mak-big-item-into-gpr erg dir bundle))

(dotus guaranteed-ok (arg dir bundle)
bundle)

(detun process-operand-if-source (operands patterns count bundle)
(it 0-. count (length operands))

bundle
(lot ((op (nth count operands))

(pat (nth count patterns)))
(it (eq (cdr pat) 'source)

(apply (car pat) (list op 'source bundle))
bundle)

(dotes symbol> (z y)
(string> (string x) (string y))

(detun process-operand-if-dest (op pat bundle)
;; Process only if destination
(it (neq (cdr pat) Idea%)

ail
(list
(if (geal-purpose-reg-p op)

op
(let ((reg (request-any-register)))

(sott (code-bundle-regs-to-be-freed bundle)
(cons reg (code-bundle-rogs-to-bo-treed bundle)))

rag))

;Unfortunately, it seems we have to code in some specifics to keep
;the code from being too complex. The assumptions are:

- An instruction has up to two sources.

- The last operand in the only one that can be a destination.
;jIf it is a destination, it is also a gpr (except for moves,
;;which are handled specially).

(detun make-into-foms (opcode operands krest pattern)
;First. check that same 8 of operands as patterns

(it (Un (length operands)
(length Pattern))

(my-error :fatal nil "got enough operands for pattern")
;Generate the code for up to two sources and up to one dest
(lote ((step-one (proceas-operand-it-source operazda pattern 0 (make-code-bundle))

(bundle (process-operand-it-source operands pattern 1 step-one))
(dest-reg (process-operand-if-dest (car (last operands))

(car (last Pattern))
bundle))) ;'Bundle mutated

Emit instruction
(emit-i-instruction tcons opcods (append (code-bundle-operand-list bundle)

dost-reg)))
EMit the code (it any) to put result into destination

(it (and dest-reg
(not (equal dost-reg (last operands) eq and eql too strong for lists

(make-legal-move (car deat-rog) (car (last operands))))

121

Free registers
(mapoar V return-register (code-buzidle-reg-to-bo-frood bundle)))))

.;Pseudo-op functions. far :reserve and :free. :suspensivee, and :label

- (reserve <symbol>) and (:fro* <symbol>) are use5d to bind the value
,; of the symbol so that (:register <symbol>) is meaningful. The
~a usage is of the form:

(:reserve (:register scratch))

p; (:nor* (:j-rogister A2) (:register scratch))

(:;r~e (:register scratch))
;; The usage in purposely verbose, to allow a change of representation,
,;as well an error-checking. (Reserving a second register of the same

*. SA using a noureserved register, ad freeing a nonreserved register
,;are all error*.)

(dofvar *virtnal-rogisters*)
(dotvar *pseudo-op-liste)

(defun pseudo-op-p (op)
(&ssoc op, epeudo-op-liste))

(defun pvocess-pseudo-op (opcode operands)
(apply (cdr (assoc opcode *pseudo-op-liste)) (list operands)))

(defun reserve-virtual-register (operands)
(late ((operand (first (car operands)))

(awe (second (car operands))))
(if (neq operand :vegister)

(my-error :fatal ail "Illegal :reserve syntax")
;Check if it's already allocated

(if (assoc name evirtual-registerso)
(my-error :fatal nil "in attempt was made to re-allocate a virtual register")
(let ((rag (request-any-register)) ; This is a TEMPORLRY measure -- it might need RO
(sotq evirtual-registerse

(cons (cons name reg)
evirtual-registerse)))))

nil)

(dofun free-virtual-register (operands)
(let ((operand (first (car operands)))

(nane (second (car operands))))
(if (neq operand :register)

(my-error :fatal nil "Illegal :free syntax")
;Check it it's already allocated

(if (assoc name evirtual-regiaterse)
(progn
(return-register (cdr (assoc name evirtual-registrs.))
(setq evirtual-ragister4e

(rewiove (assoc name evirtual-registerse)
evirtual-registerse))

(my-error :fatal nil "ALA attempt was made to free an unallocated virtual register,,))))
nil)

*There are two things this could be called for:
(:register <nano>)

or
(:register 6)

The meanings axe very different. The first was a temporary assigned by (my) hybrid-to-cj.
*The latter was a temporary assigned by lannuccils generate-vnd-instruction. Both map to
,the same thing however. For now, use [0,AO] for the latter. Inefficient, but correct.

122

;I implement this in hybrid-so-cj but describe is here, because the real fix should be here.
;A solution I considered but which is NOT implemented:
;Because reserve & free are emitted for the first type snd Oomittede
f; or the second. we have to assume a little: A-first access in an implicit reserve, and a

;second is an implicit free. This matches how Iennucci uses registers UI think!) for
;; On-loop-setup.

(detun translate-virtual-register (ret)
(let ((name (second ret)))

(translate-operand (cd~r (assoc name evirtuel-registerse))

;Originating J-machine code here might be something of a violation of abstraction.

(defvar suspensive-binding)

(defum make -suspensive -ins tract ion-code (duy)
(lets ((name (gensym 'suspensive))

(label '(:literal (:symbol u.nM)
(rot (make-tagged-literal '(:ret *name))))

(make-legal ' (label ,labol))
(setq suspensive-binding (request-appropriate-regiatox ret)) ; 1
(make-legal '(move (:message (:base 1) (:J-register 12))
(make-legal-move rof suspensive-binding)))
(aign)
(make-legal '(move (:J-register ip) (:message (:base 0))))
(make-legal '(move (:message (:bass M) (:j-registor 12)

;This is inefficient.
(defuzn make-presence-check (operands)

(let ((op (car operands))
(reg (request-any-register))

(make-legal '(rtag ,op ,rog))
(return-register rog)))

(detun end-ouspensive-part (dummy)
(return-register susponsivo-binding)
(setq suspensive-binding nil))

(def am handle-label (operands)
(emit-j-instruction (list 'label (car operands)

(detun pass-throughL-hybrid-instruction (operands)
(emit-j -instruct ion '(hybrid-instruction .@Ooperands) : pass-through t))

(aetq epseudo-op-liste (list (Cons 'reserve 8Vreserve-virtual-register)
(cons 'fe 8Vfree-virtual-rogistor)
(cons 'suspensive-instruction V mosk.uspens ive-instruct ion- code)
(cons ;suspensive-opermnd S tmako-presence-check)
(cons 'suspensive-check-done V'end-uuspensive-part)
(cons 'label I'handle-label)
(cons 'hybrid-instruction S'pass-th~rough-hybrid-instruction)))

123

0.3 Convert Simple J to Assembly

-s- Node:Comoa-Lisp; Package:ID-CONPILfl; Bss:1 -e-

,.;sj-to-asa.lisp converts KDP code from s-exprossiens into format suitable for MDPSin.
- Convert from 5-expressions to strings,

which includes putting in comas& ad newlines
- Replacing characters like ":1 and "-11 with "-" to
ake legal NDP identifiers.

- adles references. labels, and symbols.

(in-package 'id-compiler)

(defeompiler-modulo convert-sexp-j-to-aso id-compiler
(:input wad-instruct ions code-block) ; I lie
(:beforo-function procedure reset-si-to-rn-systm)
*(options Tud-output-file)
(:funot ion. ooavrt-sj-to-asK))

(defaacro cat (&rest arga)
'(concatenate 'string CGargo))

(dofvar eoutput-stringe)
(dofvar emsg-ref-liste)
(dafvar eip-ref-lisce)
(defvar operand-list)

(defun rast-sj-to-asm -system 0)
(sotq sip-ref-liste nil)
(setq emg-ref-liste nil)
(setq eoutput-stringe ")

(dogun make-j-string (sm)
(let ((a (copy-seq (my-atring Sys))))

(mak-i-string-inner a 0)
5))

(defun mak-i -string- inner (a index)
(if (< index (length s))

(let ((c (char a index)))
(if (or (*ql c t~

Ceql c
(setf (char a index) 8U.)

(make-j-string-inner a (1+ index)))))

(defun awm-output-opcode (opcode)
(setq operand-list nil)
(if opcodo

(sotq eoutput-stringe (cat *output-stringe (form&t nil '-VT-iTI (string opcode)
(setq eoitput-stringe (cat eoaiatput-strixge (format nil "-'))

(defn asm-output-label (1)
(t.m-ontput-opcode nil)
(aan-ontput-oporand (cat (mske-j-string (second (third IM) 11:19)
(acm-output-end-line))

(defian ass-output-align 0)
(ass-output-opcode nil)
(sam-output-operand ""

(asm-output-end-lin*))

(defun. amm-output-coment (text)

124

(sotq eoutput-stringe (cat *output-string* (form&t nil '-%7%;*" text))))

(defun sm-output-operand (operand)
(sotq operand-list (nconc operand-list (list operand))))

(defun as-output-end-line 0)
(asm-output-end-line-inner (length operand-list) operand-list))

(defun ass- output -end-l ine -inner (len op.)
(it 0> len 0)

(progn
(setq *output-string* (cat *output -string* (first ops))
(if 0) len 1)

(setq *output -stringe (cat *output -stringe ". "M))
(ass-output-end-line-inner (- len 0) (cdr op.)))

(defvar scurent-frme-descriptoro)

(defun convort-sj-to-ass (eb)
(let ((name (dataflow-graph-get cb :procedure-name))

(instruct ions (datafloa-graph-root-set cb))
Yuck: Do this right. On second thought, don't bother.

(sotq *current-frame-descriptor* (dataflow-graph-get cb :frame-descriptor))
(sapc V'convert-sj- instruct ion-to-asm instructions)
(let ((filename (open (make-pathnams :type MKP11

defaults (cat 'a:>ollons)'1 (string name)))

:direction :output)))
(princ *output -stringe)
; Output the module
(format filename "module '% name)
(princ eOutput-stringe filname)
(format filnme "'Und-%")

; Output the references

(loop for ref in (set-difference Cug-rof-liste '(localnovr local-getc))
doing (format filnme "ref *a-mag-.ref - RSG:((('a+a.loc)<<)+2-%"

(mak-j-string rag)
(mke-i-string rof)
name
ssys-lon-bitso))

(loop for label in *ip-ref-liste
doing (format filname "ref a..ip-raf IP:((Ca&+a..loc)<<VA))+ABSOLUTE-%"

(make-j-string label)
(make-j-string label)
nane
eays-len-bitse))

Bogus for loops
(format filename "ref 'acodoblock-ref - CB:('&_loc<<1G)+-D-%1

(dataflow-grapb-get cb :procedure-une)
(dataflov-graph-get cb :procodure-name)
(frame-deacript or-next-avai-lable-scratch-slot ecurrent-frame-deacriptor*))

(close filename))))

(defun convert-aj-instruction-to-azz (instruction)
(let ((operator (car instruction)))

(cond ((eq operator)label) ;special cases
(ass-output-label (cadr instruction)))
((eq operator 'Aligu)
(asm-output-align))
((eq operator 'hybrid-instruction)
(begin-hybrid -instruction-conyeraion (cdr instruction)))
(t
(ass-output-opcode operator)
(mapc Vcnets-poadt-s (cdr instruction))
(asm-output-ond-lino))))

125

(defun begin-hybrid-instruct ion-conwersion (text)
(asa-output-ccment text))

(defun cne-s-ean-oa (operand)
(ama-output-operand

(case (car operand)
((z tagged-literal) (output -t aggod-lit oral operand))
((:J-rogister) (my-string (second operad)))
((:frsme) (form&t nil IIC'S.A2]II (cadadr operand)))
((:uessage) (format nil "C-S,A33" (cadadr operand)))
((:temporary) (format nil "['$.toJ" (cadadrz operand)))

(defun output-tagged-literal (operand)
(lot ((tag (second operand)))

(it (eq tag special-tag)
; verything as REFs not labels (labels would be more, appropriate for branches)

(cond ((eq (car (third operand)) :code-block)
;It goes without saying that the code-block ret will be output

(cat "J" (uake-j-string (second (third operand))) "..codeblock-.ref}"))
((eq (car (third operand)) :rot)
(setq eusg-ref-liste (remove-duplicates (cons (second (third operand))

einsg-rof-liste)))
(cat IT' (make-j -string (second (third operand))) "_msg~ref})
((eq (car (third operand)) :label)
(sotq oip-ret-liste (remove-duplicates (cons (second (third operand)) *ip-ref-liate))
(cat I'{" (make--string (second (third operand))) ".i.rf)

(t

(break)))
(cond ((eq tag int-tag)

(format nil 'D" (third operand)))
((and (eq tag bool&a-tag) (numberp (third operand)))
(if (11 0 (third operand))

"false"
"true9)

(t

(format nil "'WD" (string tag) (third operand)))))

(defun my-string Wx
(if (nuaborp X)

(format nil "'D x)
(string x))

126

Bibliography

[Arvind and Nikhil 1988] Arvind and Rishiyur S. Nikhil. Executing a Program on the MIT

Tagged-Token Dataflow Architecture. Computation Structures Group Memo

271. MIT Laboratory for Computer Science, Cambridge, MA, 19&,

[Dally 1988a] Dally, William J. The J-Machine: System Support for Actors. In Hewitt, Carl,

and Agha Gul, editors, Concurrent Object Programming for Knowledge Pro-

cessing: An Actor Perspective, MIT Press, Cambridge, MA, 1989.

[Daly et al 1988b] Dally, William, et al. Message-Driven Processor Architecture. MIT Ar-

tificial Intelligence Lab Memo 1069, MIT Artificial Intelligence Laboratory,

Cambridge, MA, 1988.

[Gaudiot and Bic 1989] Gaudiot, Jean-Luc and Lubomir Bic. Data-Flow: A Status Report.

Computer Architecture News, December 1989, pages 111-118.

[Horwat 1989] Horwat, Waldemar. Concurrent Smalltalk on the Message-Driven Processor.

Master's Thesis, Department of EECS, MIT, 1989.

[Horwat and Totty 1987] Horwat, Waldemar and Brian Totty. Message-Driven Processor Sim-

ulator. MIT Concurrent VLSI Architecture Memo 5, MIT Artificial Intelligence

Laboratory, Cambridge, MA, 1987.

[lannucci 1988] Iannucci, Robert Alan, A Datafilow / von Neumann Hybrid Architecture.

Technical Report MIT/LCS/TR-228, MIT Laboratory for Computer Science,

Cambridge, MA, 1988. (PhD Thesis, Department of EECS, MIT.)

127

[Nik]il 1988] Nikhil, Rishiyur S., ID Version 88.1 Reference Manual. Technical Report Com-

putation Structures Group Memo 284, MIT Laboratory for Computer Science,

Cambridge, MA, 1988.

[Papadopoulos 19881 Papadopoulos, Gregory Michael. Implementation of a General Purpose

Dataflow Multiprocessor. Technical Report MIT/LCS/TR-432, MIT Labora-

tory for Computer Science, Cambridge, MA, 1989. (PhD Thesis, Department

of EECS, MIT.)

[Papadopoulos and Culler 19901 Papadopoulos, Gregory M., and David E. Culler, Monsoon:

An Explicit Token Store Architecture. In Proceedings of the 1 7th International

Symposium on Computer Architecture, Seattle, Washington, May 1990.

[Sakai et al 1989] Sakai, Shuichi; Yamaguchi, Yoshinori; Hiraki, Kei; Kodama, Yuetsu; and

Yuba, Toshitsugu. An Architecture of a Dataflow Single Chip Processor. Pro-

ceedings of the 16th Annual International Symposium on Computer Architec-

ture, Jerusalem, Israel, 1989, pages 46-53.

[Spertus 1989] Spertus, Ellen. Preliminary Dataflow on the MDP. MIT Concurrent VLSI

Archtiecture Memo 21, MIT Artificial Intelligence Laborary, Cambridge, MA,

1989.

[Traub 1986a] Traub, Kenneth R. A Compiler for the MIT Tagged-token Dataflow Archi-

tecture. Technical Report MIT/LCS/TR-370, MIT Laboratory for Computer

Science, Cambridge, MA, 1986.

[Traub 1989] Traub, Kenneth R., Compilation at Partitioning: A New Approach to Com-

piling Non-Strict Functional Languages. In Proceedings of the Conference

on Functional Programming Languages and Computer Architecture, London,

September 1989.

[Traub 1986b] Traub, Kenneth R. A Dataflow Compiler Substrate. Computation Structures

Group Memo 261, MIT Laboratory for Computer Science, Cambridge, MA,

1986. (Master's Thesis, Department of EECS, MIT.)

128

[Traub 1988] Traub, Kenneth R., Sequential Implementation of Lenient Programming Lan-

guages. Technical Report MIT/LCS/TR-417. MIT Laboratory for Computer

Science, Cambridge, MA, September 1988. (PhD Thesis, Department of EECS,

MET.)

129

